10 Citations (Scopus)

Abstract

Besides chemically interacting with hard tooth tissue, acidic functional monomers of self-etch adhesives should etch the prepared tooth surface to dissolve the smear layer and to provide surface micro-retention. Although the etching efficacy of functional monomers is commonly determined in terms of pH, the pH of adhesives cannot accurately be measured. Better is to measure the hydroxyapatite (HAp)–dissolving capacity, also considering that functional monomers may form monomer-Ca salts. Here, the etching efficacy of 6 functional monomers (GPDM, phenyl-P, MTEGP, 4-META, 6-MHP and 10-MDP) was investigated. Solutions containing 15 wt% monomer, 45 wt% ethanol, and 40 wt% water were prepared. Initially, we observed enamel surfaces exposed to monomer solution by scanning electron microscopy (SEM). X-ray diffraction (XRD) was employed to detect monomer-Ca salt formation. Phenyl-P exhibited a strong etching effect, while 10-MDP–treated enamel showed substance deposition, which was identified by XRD as 10-MDP–Ca salt. To confirm these SEM/XRD findings, we determined the etching efficacy of functional monomers by measuring both the concentration of Ca released from HAp using inductively coupled plasma–atomic emission spectroscopy (ICP-AES) and the amount of monomer-Ca salt formation using 31P magic-angle spinning (MAS) nuclear magnetic resonance (NMR). ICP-AES revealed that the highest Ca concentration was produced by phenyl-P and the lowest Ca concentration, almost equally, by 4-META and 10-MDP. Only 10-MDP formed 10-MDP–Ca salts, indicating that 10-MDP released more Ca from HAp than was measured by ICP-AES. Part of the released Ca was consumed to form 10-MDP–Ca salts. It is concluded that the repeatedly reported higher bonding effectiveness of 10-MDP–based adhesives must not only be attributed to the more intense chemical bonding of 10-MDP but also to its higher etching potential, a combination the other functional monomers investigated lack.

Original languageEnglish
JournalJournal of Dental Research
DOIs
Publication statusAccepted/In press - Mar 1 2018

Fingerprint

Salts
Durapatite
X-Ray Diffraction
Adhesives
Spectrum Analysis
Dental Enamel
Electron Scanning Microscopy
Tooth
Smear Layer
Ethanol
Magnetic Resonance Spectroscopy
Water
Phenyl-P adhesion promoting monomer
4-methacryloxyethyltrimellitic acid anhydride

Keywords

  • adhesives
  • enamel
  • hydroxyapatite
  • microscopy
  • nuclear magnetic resonance
  • X-ray crystallography

ASJC Scopus subject areas

  • Dentistry(all)

Cite this

Etching Efficacy of Self-Etching Functional Monomers. / Yoshihara, Kumiko; Hayakawa, Satoshi; Nagaoka, Noriyuki; Okihara, Takumi; Yoshida, Y.; Van Meerbeek, B.

In: Journal of Dental Research, 01.03.2018.

Research output: Contribution to journalArticle

@article{87236110c4f343a099342c381ea50efc,
title = "Etching Efficacy of Self-Etching Functional Monomers",
abstract = "Besides chemically interacting with hard tooth tissue, acidic functional monomers of self-etch adhesives should etch the prepared tooth surface to dissolve the smear layer and to provide surface micro-retention. Although the etching efficacy of functional monomers is commonly determined in terms of pH, the pH of adhesives cannot accurately be measured. Better is to measure the hydroxyapatite (HAp)–dissolving capacity, also considering that functional monomers may form monomer-Ca salts. Here, the etching efficacy of 6 functional monomers (GPDM, phenyl-P, MTEGP, 4-META, 6-MHP and 10-MDP) was investigated. Solutions containing 15 wt{\%} monomer, 45 wt{\%} ethanol, and 40 wt{\%} water were prepared. Initially, we observed enamel surfaces exposed to monomer solution by scanning electron microscopy (SEM). X-ray diffraction (XRD) was employed to detect monomer-Ca salt formation. Phenyl-P exhibited a strong etching effect, while 10-MDP–treated enamel showed substance deposition, which was identified by XRD as 10-MDP–Ca salt. To confirm these SEM/XRD findings, we determined the etching efficacy of functional monomers by measuring both the concentration of Ca released from HAp using inductively coupled plasma–atomic emission spectroscopy (ICP-AES) and the amount of monomer-Ca salt formation using 31P magic-angle spinning (MAS) nuclear magnetic resonance (NMR). ICP-AES revealed that the highest Ca concentration was produced by phenyl-P and the lowest Ca concentration, almost equally, by 4-META and 10-MDP. Only 10-MDP formed 10-MDP–Ca salts, indicating that 10-MDP released more Ca from HAp than was measured by ICP-AES. Part of the released Ca was consumed to form 10-MDP–Ca salts. It is concluded that the repeatedly reported higher bonding effectiveness of 10-MDP–based adhesives must not only be attributed to the more intense chemical bonding of 10-MDP but also to its higher etching potential, a combination the other functional monomers investigated lack.",
keywords = "adhesives, enamel, hydroxyapatite, microscopy, nuclear magnetic resonance, X-ray crystallography",
author = "Kumiko Yoshihara and Satoshi Hayakawa and Noriyuki Nagaoka and Takumi Okihara and Y. Yoshida and {Van Meerbeek}, B.",
year = "2018",
month = "3",
day = "1",
doi = "10.1177/0022034518763606",
language = "English",
journal = "Journal of Dental Research",
issn = "0022-0345",
publisher = "SAGE Publications Inc.",

}

TY - JOUR

T1 - Etching Efficacy of Self-Etching Functional Monomers

AU - Yoshihara, Kumiko

AU - Hayakawa, Satoshi

AU - Nagaoka, Noriyuki

AU - Okihara, Takumi

AU - Yoshida, Y.

AU - Van Meerbeek, B.

PY - 2018/3/1

Y1 - 2018/3/1

N2 - Besides chemically interacting with hard tooth tissue, acidic functional monomers of self-etch adhesives should etch the prepared tooth surface to dissolve the smear layer and to provide surface micro-retention. Although the etching efficacy of functional monomers is commonly determined in terms of pH, the pH of adhesives cannot accurately be measured. Better is to measure the hydroxyapatite (HAp)–dissolving capacity, also considering that functional monomers may form monomer-Ca salts. Here, the etching efficacy of 6 functional monomers (GPDM, phenyl-P, MTEGP, 4-META, 6-MHP and 10-MDP) was investigated. Solutions containing 15 wt% monomer, 45 wt% ethanol, and 40 wt% water were prepared. Initially, we observed enamel surfaces exposed to monomer solution by scanning electron microscopy (SEM). X-ray diffraction (XRD) was employed to detect monomer-Ca salt formation. Phenyl-P exhibited a strong etching effect, while 10-MDP–treated enamel showed substance deposition, which was identified by XRD as 10-MDP–Ca salt. To confirm these SEM/XRD findings, we determined the etching efficacy of functional monomers by measuring both the concentration of Ca released from HAp using inductively coupled plasma–atomic emission spectroscopy (ICP-AES) and the amount of monomer-Ca salt formation using 31P magic-angle spinning (MAS) nuclear magnetic resonance (NMR). ICP-AES revealed that the highest Ca concentration was produced by phenyl-P and the lowest Ca concentration, almost equally, by 4-META and 10-MDP. Only 10-MDP formed 10-MDP–Ca salts, indicating that 10-MDP released more Ca from HAp than was measured by ICP-AES. Part of the released Ca was consumed to form 10-MDP–Ca salts. It is concluded that the repeatedly reported higher bonding effectiveness of 10-MDP–based adhesives must not only be attributed to the more intense chemical bonding of 10-MDP but also to its higher etching potential, a combination the other functional monomers investigated lack.

AB - Besides chemically interacting with hard tooth tissue, acidic functional monomers of self-etch adhesives should etch the prepared tooth surface to dissolve the smear layer and to provide surface micro-retention. Although the etching efficacy of functional monomers is commonly determined in terms of pH, the pH of adhesives cannot accurately be measured. Better is to measure the hydroxyapatite (HAp)–dissolving capacity, also considering that functional monomers may form monomer-Ca salts. Here, the etching efficacy of 6 functional monomers (GPDM, phenyl-P, MTEGP, 4-META, 6-MHP and 10-MDP) was investigated. Solutions containing 15 wt% monomer, 45 wt% ethanol, and 40 wt% water were prepared. Initially, we observed enamel surfaces exposed to monomer solution by scanning electron microscopy (SEM). X-ray diffraction (XRD) was employed to detect monomer-Ca salt formation. Phenyl-P exhibited a strong etching effect, while 10-MDP–treated enamel showed substance deposition, which was identified by XRD as 10-MDP–Ca salt. To confirm these SEM/XRD findings, we determined the etching efficacy of functional monomers by measuring both the concentration of Ca released from HAp using inductively coupled plasma–atomic emission spectroscopy (ICP-AES) and the amount of monomer-Ca salt formation using 31P magic-angle spinning (MAS) nuclear magnetic resonance (NMR). ICP-AES revealed that the highest Ca concentration was produced by phenyl-P and the lowest Ca concentration, almost equally, by 4-META and 10-MDP. Only 10-MDP formed 10-MDP–Ca salts, indicating that 10-MDP released more Ca from HAp than was measured by ICP-AES. Part of the released Ca was consumed to form 10-MDP–Ca salts. It is concluded that the repeatedly reported higher bonding effectiveness of 10-MDP–based adhesives must not only be attributed to the more intense chemical bonding of 10-MDP but also to its higher etching potential, a combination the other functional monomers investigated lack.

KW - adhesives

KW - enamel

KW - hydroxyapatite

KW - microscopy

KW - nuclear magnetic resonance

KW - X-ray crystallography

UR - http://www.scopus.com/inward/record.url?scp=85045038404&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85045038404&partnerID=8YFLogxK

U2 - 10.1177/0022034518763606

DO - 10.1177/0022034518763606

M3 - Article

JO - Journal of Dental Research

JF - Journal of Dental Research

SN - 0022-0345

ER -