Estimating the protein burden limit of yeast cells by measuring the expression limits of glycolytic proteins

Yuichi Eguchi, Koji Makanae, Tomohisa Hasunuma, Yuko Ishibashi, Keiji Kito, Hisao Moriya

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)


The ultimate overexpression of a protein could cause growth defects, which are known as the protein burden. However, the expression limit at which the protein-burden effect is triggered is still unclear. To estimate this limit, we systematically measured the overexpression limits of glycolytic proteins in Saccharomyces cerevisiae. The limits of some glycolytic proteins were up to 15% of the total cellular protein. These limits were independent of the proteins’ catalytic activities, a finding that was supported by an in silico analysis. Some proteins had low expression limits that were explained by their localization and metabolic perturbations. The codon usage should be highly optimized to trigger the protein-burden effect, even under strong transcriptional induction. The S–S-bond-connected aggregation mediated by the cysteine residues of a protein might affect its expression limit. Theoretically, only non-harmful proteins could be expressed up to the protein-burden limit. Therefore, we established a framework to distinguish proteins that are harmful and non-harmful upon overexpression.

Original languageEnglish
Article numbere34595
Publication statusPublished - Aug 10 2018

ASJC Scopus subject areas

  • Neuroscience(all)
  • Immunology and Microbiology(all)
  • Biochemistry, Genetics and Molecular Biology(all)


Dive into the research topics of 'Estimating the protein burden limit of yeast cells by measuring the expression limits of glycolytic proteins'. Together they form a unique fingerprint.

Cite this