Eliciting the contribution of TiN to photoelectrochemical performance enhancement of Imma-LaTiO2N at neutral pH

Mirabbos Hojamberdiev, Juan Manuel Mora-Hernandez, Ronald Vargas, Eva Maria Heppke, Kunio Yubuta, Akira Yamakata, Zukhra Kadirova, Leticia Torres-Martínez, Katsuya Teshima, Martin Lerch

Research output: Contribution to journalArticlepeer-review

Abstract

The presence of defects, which act as the recombination hubs for photogenerated charge carriers, hinders the improvement of photocatalytic activity for oxygen evolution reaction of LaTiO2N under visible light irradiation via a four-electron-transfer reaction pathway. Here, we involve titanium nitride (TiN) in a varying content (0–17.8%) to improve the efficiency of charge separation and transport, influencing the photoelectrochemical performance of LaTiO2N. The characterization results confirm the formation of a strong contact between orthorhombic-LaTiO2N and cubic-TiN particles. The photoelectrochemical (PEC) measurements reveal the inverse dependence between electron transfer phenomena and charge carrier recombination, which allows to understand the trend when modifying LaTiO2N with TiN. In fact, the incorporation of 17.8% TiN in the LaTiO2N:TiN material results in a higher photocurrent. Open-circuit potential (OCP) decay and transient absorption spectroscopy (TAS) studies confirm longer lifetimes of charge carriers for increasing amounts of TiN in the synthesized materials. Thus, the main role of TiN is to improve the properties of the semiconductor-electrolyte interface, having verified its impact on the separation and transport of photogenerated charge carriers. Furthermore, computational studies predict that the adsorption of water molecules is favored at the LaTiO2N:TiN surface compared to the individual TiN and LaTiO2N surfaces.

Original languageEnglish
Article number101053
JournalMaterials Today Energy
Volume27
DOIs
Publication statusPublished - Jul 2022

Keywords

  • LaTiON
  • Oxynitrides
  • Photoelectrocatalysis
  • Titanium nitride
  • Water splitting

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Materials Science (miscellaneous)
  • Nuclear Energy and Engineering
  • Fuel Technology
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'Eliciting the contribution of TiN to photoelectrochemical performance enhancement of Imma-LaTiO2N at neutral pH'. Together they form a unique fingerprint.

Cite this