Electronic structure evolution across the peierls metal-insulator transition in a correlated ferromagnet

P. A. Bhobe, A. Kumar, M. Taguchi, Ritsuko Eguchi, M. Matsunami, Y. Takata, A. K. Nandy, P. Mahadevan, D. D. Sarma, A. Neroni, E. Şaşioğlu, M. Ležaić, M. Oura, Y. Senba, H. Ohashi, K. Ishizaka, M. Okawa, S. Shin, K. Tamasaku, Y. Kohmura & 6 others M. Yabashi, T. Ishikawa, K. Hasegawa, M. Isobe, Y. Ueda, A. Chainani

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K2Cr8O16, which exhibits a temperature-dependent (T-dependent) paramagnetic-toferromagnetic- metal transition at TC = 180 K and transforms into a ferromagnetic insulator below TMI = 95 K. We observe clear T-dependent dynamic valence (charge) fluctuations from above TC to TMI, which effectively get pinned to an average nominal valence of Cr+3.75 (Cr4+:Cr3+ states in a 3:1 ratio) in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0) ~ 3.5(kBTMI) ~ 35 meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U ~ 4 eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr) and the half-metallic ferromagnetism in the t2g up-spin band favor a low-energy Peierls metal-insulator transition.

Original languageEnglish
Article number041004
JournalPhysical Review X
Volume5
Issue number4
DOIs
Publication statusPublished - 2015
Externally publishedYes

Fingerprint

insulators
electronic structure
transition metals
metals
valence
electrons
metal compounds
ferromagnetism
temperature
tunnels
photoelectric emission
electron energy
orbitals
energy
high resolution
lasers

Keywords

  • Condensed matter physics

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Electronic structure evolution across the peierls metal-insulator transition in a correlated ferromagnet. / Bhobe, P. A.; Kumar, A.; Taguchi, M.; Eguchi, Ritsuko; Matsunami, M.; Takata, Y.; Nandy, A. K.; Mahadevan, P.; Sarma, D. D.; Neroni, A.; Şaşioğlu, E.; Ležaić, M.; Oura, M.; Senba, Y.; Ohashi, H.; Ishizaka, K.; Okawa, M.; Shin, S.; Tamasaku, K.; Kohmura, Y.; Yabashi, M.; Ishikawa, T.; Hasegawa, K.; Isobe, M.; Ueda, Y.; Chainani, A.

In: Physical Review X, Vol. 5, No. 4, 041004, 2015.

Research output: Contribution to journalArticle

Bhobe, PA, Kumar, A, Taguchi, M, Eguchi, R, Matsunami, M, Takata, Y, Nandy, AK, Mahadevan, P, Sarma, DD, Neroni, A, Şaşioğlu, E, Ležaić, M, Oura, M, Senba, Y, Ohashi, H, Ishizaka, K, Okawa, M, Shin, S, Tamasaku, K, Kohmura, Y, Yabashi, M, Ishikawa, T, Hasegawa, K, Isobe, M, Ueda, Y & Chainani, A 2015, 'Electronic structure evolution across the peierls metal-insulator transition in a correlated ferromagnet', Physical Review X, vol. 5, no. 4, 041004. https://doi.org/10.1103/PhysRevX.5.041004
Bhobe, P. A. ; Kumar, A. ; Taguchi, M. ; Eguchi, Ritsuko ; Matsunami, M. ; Takata, Y. ; Nandy, A. K. ; Mahadevan, P. ; Sarma, D. D. ; Neroni, A. ; Şaşioğlu, E. ; Ležaić, M. ; Oura, M. ; Senba, Y. ; Ohashi, H. ; Ishizaka, K. ; Okawa, M. ; Shin, S. ; Tamasaku, K. ; Kohmura, Y. ; Yabashi, M. ; Ishikawa, T. ; Hasegawa, K. ; Isobe, M. ; Ueda, Y. ; Chainani, A. / Electronic structure evolution across the peierls metal-insulator transition in a correlated ferromagnet. In: Physical Review X. 2015 ; Vol. 5, No. 4.
@article{4c5e4901756045d5b6951cfbffff13ad,
title = "Electronic structure evolution across the peierls metal-insulator transition in a correlated ferromagnet",
abstract = "Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K2Cr8O16, which exhibits a temperature-dependent (T-dependent) paramagnetic-toferromagnetic- metal transition at TC = 180 K and transforms into a ferromagnetic insulator below TMI = 95 K. We observe clear T-dependent dynamic valence (charge) fluctuations from above TC to TMI, which effectively get pinned to an average nominal valence of Cr+3.75 (Cr4+:Cr3+ states in a 3:1 ratio) in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0) ~ 3.5(kBTMI) ~ 35 meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U ~ 4 eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr) and the half-metallic ferromagnetism in the t2g up-spin band favor a low-energy Peierls metal-insulator transition.",
keywords = "Condensed matter physics",
author = "Bhobe, {P. A.} and A. Kumar and M. Taguchi and Ritsuko Eguchi and M. Matsunami and Y. Takata and Nandy, {A. K.} and P. Mahadevan and Sarma, {D. D.} and A. Neroni and E. Şaşioğlu and M. Ležaić and M. Oura and Y. Senba and H. Ohashi and K. Ishizaka and M. Okawa and S. Shin and K. Tamasaku and Y. Kohmura and M. Yabashi and T. Ishikawa and K. Hasegawa and M. Isobe and Y. Ueda and A. Chainani",
year = "2015",
doi = "10.1103/PhysRevX.5.041004",
language = "English",
volume = "5",
journal = "Physical Review X",
issn = "2160-3308",
publisher = "American Physical Society",
number = "4",

}

TY - JOUR

T1 - Electronic structure evolution across the peierls metal-insulator transition in a correlated ferromagnet

AU - Bhobe, P. A.

AU - Kumar, A.

AU - Taguchi, M.

AU - Eguchi, Ritsuko

AU - Matsunami, M.

AU - Takata, Y.

AU - Nandy, A. K.

AU - Mahadevan, P.

AU - Sarma, D. D.

AU - Neroni, A.

AU - Şaşioğlu, E.

AU - Ležaić, M.

AU - Oura, M.

AU - Senba, Y.

AU - Ohashi, H.

AU - Ishizaka, K.

AU - Okawa, M.

AU - Shin, S.

AU - Tamasaku, K.

AU - Kohmura, Y.

AU - Yabashi, M.

AU - Ishikawa, T.

AU - Hasegawa, K.

AU - Isobe, M.

AU - Ueda, Y.

AU - Chainani, A.

PY - 2015

Y1 - 2015

N2 - Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K2Cr8O16, which exhibits a temperature-dependent (T-dependent) paramagnetic-toferromagnetic- metal transition at TC = 180 K and transforms into a ferromagnetic insulator below TMI = 95 K. We observe clear T-dependent dynamic valence (charge) fluctuations from above TC to TMI, which effectively get pinned to an average nominal valence of Cr+3.75 (Cr4+:Cr3+ states in a 3:1 ratio) in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0) ~ 3.5(kBTMI) ~ 35 meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U ~ 4 eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr) and the half-metallic ferromagnetism in the t2g up-spin band favor a low-energy Peierls metal-insulator transition.

AB - Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K2Cr8O16, which exhibits a temperature-dependent (T-dependent) paramagnetic-toferromagnetic- metal transition at TC = 180 K and transforms into a ferromagnetic insulator below TMI = 95 K. We observe clear T-dependent dynamic valence (charge) fluctuations from above TC to TMI, which effectively get pinned to an average nominal valence of Cr+3.75 (Cr4+:Cr3+ states in a 3:1 ratio) in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0) ~ 3.5(kBTMI) ~ 35 meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U ~ 4 eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr) and the half-metallic ferromagnetism in the t2g up-spin band favor a low-energy Peierls metal-insulator transition.

KW - Condensed matter physics

UR - http://www.scopus.com/inward/record.url?scp=84953249902&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84953249902&partnerID=8YFLogxK

U2 - 10.1103/PhysRevX.5.041004

DO - 10.1103/PhysRevX.5.041004

M3 - Article

VL - 5

JO - Physical Review X

JF - Physical Review X

SN - 2160-3308

IS - 4

M1 - 041004

ER -