Effects of polyamines from Thermus thermophilus, an extreme-thermophilic eubacterium, on tRNA methylation by tRNA (Gm18) methyltransferase (TrmH)

Hiroyuki Hori, Yusuke Terui, Chisato Nakamoto, Chikako Iwashita, Anna Ochi, Kazunori Watanabe, Tairo Oshima

Research output: Contribution to journalArticle

10 Citations (Scopus)


Thermus thermophilus is an extreme-thermophilic eubacterium, which grows at a wide range of temperatures (50-83°C). This thermophile produces various polyamines including long and branched polyamines. In tRNAs from T. thermophilus, three distinct modifications, 2'-O-methylguanosine at position 18 (Gm18), 5-methyl-2-thiouridine at position 54 and N1-methyladenosine at position 58, are assembled at the elbow region to stabilize the L-shaped tRNA structure. However, the structures of unmodified tRNA precursors are disrupted at high temperatures. We hypothesize that polyamine(s) might have a positive effect on the modification process of unmodified tRNA transcript. We investigated the effects of eight polyamines on Gm18 formation in the yeast tRNAPhe transcript by tRNA (Gm18) methyltransferase (TrmH). Higher concentrations of linear polyamines inhibited TrmH activity at 55°C, while optimum concentration increased TrmH activity at 45-75°C. Exceptionally, caldohexamine, a long polyamine, did not show any positive effect on the TrmH activity at 55°C. However, temperature-dependent experiments revealed that 1 mM caldohexamine increased TrmH activity at 60-80°C. Furthermore, 0.25 mM tetrakis(3-aminopropy)ammonium, a branched polyamine, increased TrmH activity at a broad range of temperatures (40-85°C). Thus, caldohexamine and tetrakis(3-aminopropy)ammonium were found to enhance the TrmH activity at high temperatures.

Original languageEnglish
Pages (from-to)509-517
Number of pages9
JournalJournal of Biochemistry
Issue number5
Publication statusPublished - May 1 2016
Externally publishedYes



  • methyltransferase
  • polyamine
  • RNA modification
  • thermophile
  • tRNA

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology

Cite this