Abstract
This report presents results of investigations of the influence of anthropogenic heat release in Japanese megacity (Keihanshin district) upon the urban climate, using the energy database [Shimoda et al., 1999. Estimation and evaluation of artificial waste heat in urban area. Selected Papers from the Conference ICB-ICUC'99 WCASP-50 WMO/TD no. 1026] as a part of the land-surface boundary conditions of a mesoscale meteorological simulation model. The calculated results related to atmospheric temperature distribution were similar to observed values not only for daily averages but also for amplitudes and phases of diurnal change. To reproduce accurately, it is essential to reproduce urban characteristics such as an urban canopy and anthropogenic heat release in a fine resolution mesh. We attempted an analysis using current data for anthropogenic heat and under uniform heat release conditions, to investigate temporal and spatial characteristics in relation to the influence of anthropogenic heat release on the urban climate. The results of investigation into the influence of anthropogenic heat release on atmospheric temperature using current data indicate that the amount of heat released is lower at night than during the day, but the temperature rise is nearly 3 times greater. Results of investigation into the influence of anthropogenic heat release on wind systems using current data indicate that the onset of land breezes is delayed, particularly in a coastal area. Investigation into the temporal characteristics related to the influence of anthropogenic heat release under uniform heat release conditions showed a maximum influence on temperature during the predawn period.
Original language | English |
---|---|
Pages (from-to) | 421-431 |
Number of pages | 11 |
Journal | Environmental Research |
Volume | 109 |
Issue number | 4 |
DOIs | |
Publication status | Published - May 2009 |
Externally published | Yes |
Keywords
- Anthropogenic heat release
- Megacity
- Mesoscale
- Meteorological simulation
- Numerical simulation
- Urban heat island
ASJC Scopus subject areas
- Biochemistry
- Environmental Science(all)