Effects of amiloride on gustatory neural responses to salts in the frog

Yasuyuki Kitada, Kazuhisa Okuda-Akabane, Yoshihiro Mitoh

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

In frogs, the glossopharyngeal nerve (GL) innervates taste receptors on almost the entire tongue. The mandibular branch (MBF) and palatine branch (PN) of the facial nerve innervate taste receptors on a very small area at the base of the tongue and on the palate, respectively. In the present study, effects of amiloride, an epithelial sodium channel blocker, on the tonic responses of the GL, MBF and PN in frogs to NaCl, LiCl, KCl and CaCl2 were investigated. In three nerves, amiloride at 0.5 mM, a relatively high concentration, did not affect the responses to 0.15 (concentration just above threshold)-0.5 M NaCl, 0.5 M LiCl and 0.3 M KCl, whereas it almost completely inhibited the response to 1.0 mM CaCl2. Amiloride may exert an inhibitory action on the response to CaCl2 by a competitive antagonism between Ca2+ and a monovalent cation of amiloride, because the response to Ca2+ is competitive inhibited by other cations such as Na+ and Mg2+. The lack of inhibitory effect of amiloride on the responses in the GL, MBF and PN to NaCl suggests that amiloride-sensitive sodium channels in the apical membrane of taste receptor cells are not involved in sodium taste transduction in frogs.

Original languageEnglish
Pages (from-to)1203-1210
Number of pages8
JournalChemical Senses
Volume26
Issue number9
DOIs
Publication statusPublished - 2001

ASJC Scopus subject areas

  • Physiology
  • Sensory Systems
  • Physiology (medical)
  • Behavioral Neuroscience

Fingerprint Dive into the research topics of 'Effects of amiloride on gustatory neural responses to salts in the frog'. Together they form a unique fingerprint.

  • Cite this