Abstract
To better understand the material properties of lead zirconate titanate (PZT) ceramics, the influence of domain wall characteristics on the electrical and mechanical properties of PZT ceramics has been investigated. To obtain various domain wall characteristics, the poling process was carried out with different patterns with respect to the PZT ceramic. The domain walls were aligned in the PZT ceramic in the direction perpendicular to the poling direction. Such domain wall characteristic produced different crack growth behaviours. The crack growth occurred mainly along the domain walls of {110} for a 31 (crack growth direction perpendicular to the poling direction) because of the high stress concentration between the domain walls. In contrast, the crack propagated along both domain walls and grain boundaries for a 33 (crack growth direction parallel to the poling direction), leading to high crack growth resistance and good mechanical properties. The fracture toughness K IC values for the PZT ceramics in the a 31 and a 33 directions were about 0.5 and 2.6 MPa m 1/2 respectively. It also appeared that the domain walls collapsed when a number of poling processes are conducted along different directions. These PZT ceramics had high mechanical properties due to the low stress concentrations.
Original language | English |
---|---|
Pages (from-to) | 187-195 |
Number of pages | 9 |
Journal | Advances in Applied Ceramics |
Volume | 111 |
Issue number | 4 |
DOIs | |
Publication status | Published - May 2012 |
Externally published | Yes |
Keywords
- Domain wall
- Electrical property
- Lead zirconate titanate ceramic
- Mechanical property
- Piezoelectric ceramic
ASJC Scopus subject areas
- Ceramics and Composites
- Industrial and Manufacturing Engineering