Effect of different substituents on the water-solubility and stability properties of 1:2 [60]fullerene derivative·gamma-cyclodextrin complexes

Atsushi Ikeda, Akiko Hirata, Michiko Ishikawa, Jun Ichi Kikuchi, Shunsuke Mieda, Wataru Shinoda

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

We have demonstrated that C60 derivatives bearing a pyrrolidine moiety as well as a variety of other substituents can form 1:2 complexes with γ-cyclodextrin (γ-CDx) using a mechanochemical high-speed vibration milling apparatus. When the influence of the steric hindrance of the substituents on the formation of the complexes was negligible, the water-solubilities of the complexes were shown experimentally to be completely dependent on the hydrophobic properties of the substituent. Furthermore, the stabilities of the γ-CDx-complexes of several different C60 derivatives were found to be similar to or slightly higher than that of the C60·γ-CDx complex, with the solubilities of the complexes showing no correlation to the stabilities. Based on the results of a series of theoretical investigations, we have shown that the stabilities of the γ-CDx-complexes can be affected not only by steric effects but also by the polarities of the substituent groups, which exist in the vicinity of the upper rim of γ-CDx, because the water bound to the polar group can assist in the stabilisation of the complexes.

Original languageEnglish
Pages (from-to)7843-7851
Number of pages9
JournalOrganic and Biomolecular Chemistry
Volume11
Issue number45
DOIs
Publication statusPublished - Dec 7 2013
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Physical and Theoretical Chemistry
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Effect of different substituents on the water-solubility and stability properties of 1:2 [60]fullerene derivative·gamma-cyclodextrin complexes'. Together they form a unique fingerprint.

Cite this