Effect of ambient pressure on local concentration measurement of transient hydrogen jet in a constant-volume vessel using spark-induced breakdown spectroscopy

Md Tasyrif Abdul Rahman, Nobuyuki Kawahara, Kazuya Tsuboi, Eiji Tomita

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

We report an investigation of the effects of the ambient pressure on fuel concentration measurements of an injected jet of hydrogen using spark-induced breakdown spectroscopy (SIBS) in a constant-volume vessel. Measurements were carried out using hydrogen injected into a nitrogen environment with different ambient pressures, and the local concentrations were measured at various spark locations. The optical emission from the spark discharge at 501 nm (corresponding to nitrogen) and 656 nm (corresponding to hydrogen) was observed using SIBS. Spectrally resolved emission from the plasma was detected simultaneously using a spectrometer. The potential to determine the hydrogen/nitrogen ratio in the spark gap using was demonstrated. Spectral calibration was carried out using a hydrogen/nitrogen mixture, and hydrogen was injected at a pressure of 5.0 MPa into nitrogen with ambient pressures in the range 0.5-1.5 MPa. The results show an increase in the background radiation, as well as of the peaks corresponding to hydrogen and nitrogen atomic emission lines, as the ambient pressure increased. An increase in the density of nitrogen inside the chamber influenced the structure of the hydrogen jet, slowing the spray and reducing penetration, which altered the equivalence ratio at the location of the spark. When the spark occurred during injection, the behavior of the hydrogen jet was quasi-steady state; when the spark timing followed the injection, however, an unsteady state was observed.

Original languageEnglish
Pages (from-to)4717-4725
Number of pages9
JournalInternational Journal of Hydrogen Energy
Volume40
Issue number13
DOIs
Publication statusPublished - Jan 1 2015

Keywords

  • Ambient pressure
  • Direct injection
  • Hydrogen
  • Local fuel concentration
  • Spark ignition
  • Spark induced breakdown spectroscopy

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology

Fingerprint Dive into the research topics of 'Effect of ambient pressure on local concentration measurement of transient hydrogen jet in a constant-volume vessel using spark-induced breakdown spectroscopy'. Together they form a unique fingerprint.

  • Cite this