Dosimetry of radon progeny deposited on skin in air and thermal water

Akihiro Sakoda, Yuu Ishimori, Norie Kanzaki, Hiroshi Tanaka, Takahiro Kataoka, Fumihiro Mitsunobu, Kiyonori Yamaoka

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

It is held that the skin dose from radon progeny is not negligibly small and that introducing cancer is a possible consequence under normal circumstances as there are a number of uncertainties in terms of related parameters such as activity concentrations in air and water, target cells in skin, skin covering materials, and deposition velocities. An interesting proposal has emerged in that skin exposure to natural radon-rich thermal water as part of balneotherapy can produce an immune response to induce beneficial health effects. The goal of this study was to obtain generic dose coefficients with a focus on the radon progeny deposited on the skin in air or water in relation to risk or treatment assessments. We thus first estimated the skin deposition velocities of radon progeny in air and thermal water based on data from the latest human studies. Skin dosimetry was then performed under different assumptions regarding alpha-emitting source position and target cell (i.e. basal cells or Langerhans cells). Furthermore, the impact of the radon progeny deposition on effective doses from all exposure pathways relating to 'radon exposure' was assessed using various possible scenarios. It was found that in both exposure media, effective doses from radon progeny inhalation are one to four orders of magnitude higher than those from the other pathways. In addition, absorbed doses on the skin can be the highest among all pathways when the radon activity concentrations in water are two or more orders of magnitude higher than those in air.

Original languageEnglish
Pages (from-to)634-644
Number of pages11
JournalJournal of radiation research
Volume62
Issue number4
DOIs
Publication statusPublished - Jul 1 2021

Keywords

  • air
  • alpha particle
  • deposition velocity
  • radon progeny
  • skin
  • thermal water

ASJC Scopus subject areas

  • Radiation
  • Radiology Nuclear Medicine and imaging
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Dosimetry of radon progeny deposited on skin in air and thermal water'. Together they form a unique fingerprint.

Cite this