DOMINANT AWN INHIBITOR Encodes the ALOG Protein Originating from Gene Duplication and Inhibits AWN Elongation by Suppressing Cell Proliferation and Elongation in Sorghum

Hideki Takanashi, Hiromi Kajiya-Kanegae, Asuka Nishimura, Junko Yamada, Motoyuki Ishimori, Masaaki Kobayashi, Kentaro Yano, Hiroyoshi Iwata, Nobuhiro Tsutsumi, Wataru Sakamoto

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The awn, a needle-like structure extending from the tip of the lemma in grass species, plays a role in environmental adaptation and fitness. In some crops, awns appear to have been eliminated during domestication. Although numerous genes involved in awn development have been identified, several dominant genes that eliminate awns are also known to exist. For example, in sorghum (Sorghum bicolor), the dominant awn-inhibiting gene has been known since 1921; however, its molecular features remain uncharacterized. In this study, we conducted quantitative trait locus analysis and a genome-wide association study of awn-related traits in sorghum and identified DOMINANT AWN INHIBITOR (DAI), which encodes the ALOG family protein on chromosome 3. DAI appeared to be present in most awnless sorghum cultivars, likely because of its effectiveness. Detailed analysis of the ALOG protein family in cereals revealed that DAI originated from a duplication of its twin paralog (DAIori) on chromosome 10. Observations of immature awns in near-isogenic lines revealed that DAI inhibits awn elongation by suppressing both cell proliferation and elongation. We also found that only DAI gained a novel function to inhibit awn elongation through an awn-specific expression pattern distinct from that of DAIori. Interestingly, heterologous expression of DAI with its own promoter in rice inhibited awn elongation in the awned cultivar Kasalath. We found that DAI originated from gene duplication, providing an interesting example of gain-of-function that occurs only in sorghum but shares its functionality with rice and sorghum.

Original languageEnglish
Pages (from-to)901-918
Number of pages18
JournalPlant and Cell Physiology
Volume63
Issue number7
DOIs
Publication statusPublished - Jul 1 2022

Keywords

  • Awn
  • DOMINANT AWN INHIBITOR
  • Genome-wide association study
  • Quantitative trait locus
  • Sorghum

ASJC Scopus subject areas

  • Physiology
  • Plant Science
  • Cell Biology

Fingerprint

Dive into the research topics of 'DOMINANT AWN INHIBITOR Encodes the ALOG Protein Originating from Gene Duplication and Inhibits AWN Elongation by Suppressing Cell Proliferation and Elongation in Sorghum'. Together they form a unique fingerprint.

Cite this