TY - JOUR
T1 - Domain control by adjusting anisotropic stress in pyrochlore oxide Cd2Re2O7
AU - Tajima, Satoshi
AU - Hirai, Daigorou
AU - Kinoshita, Yuto
AU - Tokunaga, Masashi
AU - Akiba, Kazuto
AU - Kobayashi, Tatsuo C.
AU - Hirose, Hishiro T.
AU - Hiroi, Zenji
N1 - Publisher Copyright:
Copyright © 2020, The Authors. All rights reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/9/30
Y1 - 2020/9/30
N2 - The 5d pyrochlore oxide Cd2Re2O7 exhibits successive phase transitions from a cubic pyrochlore structure (phase I) to a tetragonal structure without inversion symmetry below Ts1 of ~200 K (phase II) and further to another noncentrosymmetric tetragonal structure below Ts2 of ~120 K (phase III). The two low-temperature phases may be characterized by odd-parity multipolar orders induced by the Fermi liquid instability of the spin–orbit-coupled metal. To control the tetragonal domains generated by the transitions and to obtain a single-domain crystal for the measurements of anisotropic properties, we prepared single crystals with the (0 0 1) surface and applied biaxial and uniaxial stresses along the plane. Polarizing optical microscopy observations revealed that inducing a small strain of approximately 0.05% could flip the twin domains ferroelastically in a reversible fashion at low temperatures, which evidences that the tetragonal deformation switches at Ts2 between c > a for phase II and c < a for phase III. Resistivity measurements using single-domain crystals under uniaxial stress showed that the anisotropy was maximum at around Ts2 and turned over across Ts2: resistivity along the c axis is larger (smaller) than that along the a axis by ~25% for phase II (III) at around Ts2. These large anisotropies probably originate from spin-dependent scattering in the spin-split Fermi surfaces of the cluster electric toroidal quadrupolar phases of Cd2Re2O7
AB - The 5d pyrochlore oxide Cd2Re2O7 exhibits successive phase transitions from a cubic pyrochlore structure (phase I) to a tetragonal structure without inversion symmetry below Ts1 of ~200 K (phase II) and further to another noncentrosymmetric tetragonal structure below Ts2 of ~120 K (phase III). The two low-temperature phases may be characterized by odd-parity multipolar orders induced by the Fermi liquid instability of the spin–orbit-coupled metal. To control the tetragonal domains generated by the transitions and to obtain a single-domain crystal for the measurements of anisotropic properties, we prepared single crystals with the (0 0 1) surface and applied biaxial and uniaxial stresses along the plane. Polarizing optical microscopy observations revealed that inducing a small strain of approximately 0.05% could flip the twin domains ferroelastically in a reversible fashion at low temperatures, which evidences that the tetragonal deformation switches at Ts2 between c > a for phase II and c < a for phase III. Resistivity measurements using single-domain crystals under uniaxial stress showed that the anisotropy was maximum at around Ts2 and turned over across Ts2: resistivity along the c axis is larger (smaller) than that along the a axis by ~25% for phase II (III) at around Ts2. These large anisotropies probably originate from spin-dependent scattering in the spin-split Fermi surfaces of the cluster electric toroidal quadrupolar phases of Cd2Re2O7
UR - http://www.scopus.com/inward/record.url?scp=85098829544&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85098829544&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85098829544
JO - [No source information available]
JF - [No source information available]
SN - 0402-1215
ER -