TY - JOUR
T1 - DkMyb2 wound-induced transcription factor of persimmon (Diospyros kaki Thunb.), contributes to proanthocyanidin regulation
AU - Akagi, Takashi
AU - Ikegami, Ayako
AU - Yonemori, Keizo
PY - 2010
Y1 - 2010
N2 - Proanthocyanidins (PAs) are secondary metabolites that contribute to the protection of a plant against biotic and abiotic stresses. Persimmon (Diospyros kaki) accumulates abundant PAs in each plant organ, and some potential Myb-like transcription factors (Myb-TFs) involved in the production of PAs have been isolated. In this study, we aimed to molecularly characterize one of them, DkMyb2, which was placed in a subclade including a PA regulator of Arabidopsis (Arabidopsis thaliana), TRANSPARENT TESTA2 (TT2), and was co-induced with PA pathway genes after wound stress. Ectopic DkMyb2 overexpression caused significant up-regulation of PA pathway genes in transgenic persimmon calluses and significant accumulation of PA, and increased mean degree of polymerization of PAs in transgenic kiwifruit calluses. Analysis of the DNA-binding ability of DkMyb2 by electrophoretic mobility shift assays showed that DkMyb2 directly binds to the AC-rich cis-motifs known as AC elements in the promoters of the two PA pathway genes in persimmon, DkANR, and DkLAR. Furthermore, a transient reporter assay using a dual-luciferase system demonstrated direct transcriptional activation of DkANR and DkLAR by DkMyb2. We also discuss subfunctionalization of two PA regulators in persimmon, DkMyb2 and DkMyb4, as well as PA regulators in other plant species from the viewpoint of their ability to bind to cis-motifs and their functions in transcriptional activation. Our results provide insight into the multiple regulatory mechanisms that control PA metabolism by Myb-TFs in persimmon.
AB - Proanthocyanidins (PAs) are secondary metabolites that contribute to the protection of a plant against biotic and abiotic stresses. Persimmon (Diospyros kaki) accumulates abundant PAs in each plant organ, and some potential Myb-like transcription factors (Myb-TFs) involved in the production of PAs have been isolated. In this study, we aimed to molecularly characterize one of them, DkMyb2, which was placed in a subclade including a PA regulator of Arabidopsis (Arabidopsis thaliana), TRANSPARENT TESTA2 (TT2), and was co-induced with PA pathway genes after wound stress. Ectopic DkMyb2 overexpression caused significant up-regulation of PA pathway genes in transgenic persimmon calluses and significant accumulation of PA, and increased mean degree of polymerization of PAs in transgenic kiwifruit calluses. Analysis of the DNA-binding ability of DkMyb2 by electrophoretic mobility shift assays showed that DkMyb2 directly binds to the AC-rich cis-motifs known as AC elements in the promoters of the two PA pathway genes in persimmon, DkANR, and DkLAR. Furthermore, a transient reporter assay using a dual-luciferase system demonstrated direct transcriptional activation of DkANR and DkLAR by DkMyb2. We also discuss subfunctionalization of two PA regulators in persimmon, DkMyb2 and DkMyb4, as well as PA regulators in other plant species from the viewpoint of their ability to bind to cis-motifs and their functions in transcriptional activation. Our results provide insight into the multiple regulatory mechanisms that control PA metabolism by Myb-TFs in persimmon.
KW - Cis-motif
KW - DkMyb2
KW - DkMyb4
KW - Persimmon
KW - Proanthocyanidin
UR - http://www.scopus.com/inward/record.url?scp=77956692405&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77956692405&partnerID=8YFLogxK
U2 - 10.1007/s00425-010-1241-7
DO - 10.1007/s00425-010-1241-7
M3 - Article
C2 - 20690029
AN - SCOPUS:77956692405
SN - 0032-0935
VL - 232
SP - 1045
EP - 1059
JO - Planta
JF - Planta
IS - 5
ER -