Abstract
Disrupted-in-Schizophrenia-1 (DISC1) is a candidate gene for susceptibility of schizophrenia. In the accompanying paper (Taya et al., 2006), we report that DISC1 acts as a linker between Kinesin-1 and DISC1-interacting molecules, such as NudE-like, lissencephaly-1, and 14-3-3ε. Here we identified growth factor receptor bound protein 2 (Grb2) as a novel DISC1-interacting molecule. Grb2 acts as an adaptor molecule that links receptor tyrosine kinases and the Ras-extracellular signal-regulated kinase (ERK) pathway. DISC1 formed a ternary complex with Grb2 and kinesin heavy chain KIF5A of Kinesin-1. In cultured rat hippocampal neurons, both DISC1 and Grb2 partially colocalized at the distal part of axons. Knockdown of DISC1 or kinesin light chains of Kinesin-1 by RNA interference inhibited the accumulation of Grb2 from the distal part of axons. Knockdown of DISC1 also inhibited the neurotrophin-3 (NT-3)-induced phosphorylation of ERK-1/2 at the distal part of axons and inhibited NT-3-induced axon elongation. These results suggest that DISC1 is required for NT-3-induced axon elongation and ERK activation at the distal part of axons by recruiting Grb2 to axonal tips.
Original language | English |
---|---|
Pages (from-to) | 4-14 |
Number of pages | 11 |
Journal | Journal of Neuroscience |
Volume | 27 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 3 2007 |
Externally published | Yes |
Keywords
- Axon elongation
- DISC1
- ERK
- Grb2
- Neurotrophin
- Schizophrenia
ASJC Scopus subject areas
- Neuroscience(all)