DFT study of the reduction reaction of calcium perchlorate on olivine surface: Implications to formation of Martian's regolith

Elizabeth Escamilla-Roa, Maria Paz Zorzano, Javier Martin-Torres, Alfonso Hernández-Laguna, C. Ignacio Sainz-Díaz

Research output: Contribution to journalArticle

Abstract

Perchlorates have been found widespread on the surface of Mars, their origin and degradation pathways are not understood to date yet. We investigate here, from a theoretical point of view, the potential redox processes that take place in the interaction of Martian minerals such as olivine, with anhydrous and hydrated perchlorates. For this theoretical study, we take as mineral substrate the (1 0 0) surface of forsterite and calcium perchlorate salt as adsorbate. Our DFT calculations suggests a reduction pathway to chlorate and chlorite. When the perchlorate has more than 4 water molecules, this mechanism, which does not require high-temperature or high energy sources, results in parallel with the oxidation of the mineral surface, forming magnesium peroxide, MgO2, and in the formation of ClO3, which through photolysis is known to form ClO-O2. Because of the high UV irradiance that reaches the surface of Mars, this may be a source of O2 on Mars. Our results suggest that this process may be a natural removal pathway for perchlorates from the Martian regolith, which in the presence of atmospheric water for salt hydration, can furthermore lead to the production of oxygen. This mechanism may thus have implications on the present and future habitability of the Martian surface.

Original languageEnglish
Article number145634
JournalApplied Surface Science
Volume512
DOIs
Publication statusPublished - May 15 2020
Externally publishedYes

Keywords

  • (1 0 0) forsterite surface
  • Calcium perchlorate
  • Chemisorption
  • Chlorate
  • Chlorite
  • Density Functional Theory (DFT)
  • Infrared spectroscopy
  • Magnesium peroxide
  • Mars
  • Olivine
  • Oxygen
  • Ozone
  • Physisorption
  • Redox
  • Reduction
  • Regolith
  • Water

ASJC Scopus subject areas

  • Chemistry(all)
  • Condensed Matter Physics
  • Physics and Astronomy(all)
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films

Fingerprint Dive into the research topics of 'DFT study of the reduction reaction of calcium perchlorate on olivine surface: Implications to formation of Martian's regolith'. Together they form a unique fingerprint.

  • Cite this