Abstract
Glucocorticoids (GCs) are widely used to treat inflammatory diseases and cancers. A multitude of undesired side effects have been reported in GC-treated patients including decreased linear bone growth. We have previously reported that GCs activate the caspase cascade and trigger Bax-mediated mitochondrial apoptosis in growth plate chondrocytes causing growth retardation in young mice. To further explore the role of mitochondrial apoptosis in GC-induced bone growth retardation, a number of pro- and anti-apoptotic proteins were studied in ex vivo cultures of human growth plate cartilage and human HCS-2/8 proliferative chondrocytes exposed to dexamethasone. Dexamethasone was found to increase the pro-apoptotic proteins Bcl-xS, Bad, and Bak as well as the proteolysis of Bid. Anti-Bid small interfering RNA partially rescued the chondrocytes from dexamethasone-induced apoptosis. Taken together, our data suggest that GC treatment differentially regulates Bcl-2 family member proteins to facilitate mitochondrial apoptosis in proliferative chondrocytes thereby contributing to GC-induced bone growth impairment. Prevention of this imbalance between pro- and anti-apoptotic Bcl-2 family proteins may provide a new strategy to protect from adverse effects of GCs on bone growth.
Original language | English |
---|---|
Pages (from-to) | 196-200 |
Number of pages | 5 |
Journal | Toxicology Letters |
Volume | 224 |
Issue number | 2 |
DOIs | |
Publication status | Published - Jan 13 2014 |
Keywords
- Apoptosis
- Bcl-2 family proteins
- Bid
- Chondrocytes
- Dexamethasone
- Human growth plate
ASJC Scopus subject areas
- Toxicology