TY - GEN
T1 - Development of a dynamic micro RI imaging system for single cells
AU - Hirumi, G.
AU - Nishikido, F.
AU - Tashima, H.
AU - Wakizaka, H.
AU - Higuchi, T.
AU - Haneishi, H.
AU - Yamaya, T.
N1 - Funding Information:
This work was supported by the Chiba University SEEDS Fund (Chiba University Open Recruitment for International Exchange Program).
Publisher Copyright:
© 2017 IEEE.
PY - 2018/11/12
Y1 - 2018/11/12
N2 - Studies on cell regulation are attracting worldwide attention in order to realize regenerative medicine. Therefore, a nuclear medicine imaging method, which can use tracers having substantially the same composition as a target biomolecule, is required. Autoradiography is a high-resolution nuclear medicine imaging method. However, this method does not have a dynamical imaging capability due to the principle on which it is based. In this research, we develop a nuclear medicine imaging system for dynamic cell observation. Specifically, in order to prevent broadening of the scintillation position because of scintillation light spreading in the scintillator, β-rays are detected by a thin scintillator plate. A scientific CMOS camera with low readout noise and high resolution was used to detect scintillation light. The scintillator plate was a CsI crystal connected to an optical fiber array. The scintillation light generated from the scintillator plate was extracted through optical fibers. The imaging lenses adopted in this research were a high-speed imaging and a conversion lens.Imaging resolution was adjusted to 6.5 × 6.5 mm 2 / pixel and exposure time was 10 s. In order to evaluate the imaging performance of the proposed system, we measured samples containing a radiopharmaceutical with a prototype system. In this measurement, two different activity 18 F-solutions were used as the imaging target. They were fixed with a uniform thickness of 0.4 mm. In the imaging results, we measured different image values depending on their activities. On the other hand, in the region of no 18 F-solutions, the image value was almost constant. The output had sufficient linearity for images with activity exceeding 0.05 Bq / pixel. Imaging results showed that our system has sufficient sensitivity for imaging uptake of 18 F by single cells.
AB - Studies on cell regulation are attracting worldwide attention in order to realize regenerative medicine. Therefore, a nuclear medicine imaging method, which can use tracers having substantially the same composition as a target biomolecule, is required. Autoradiography is a high-resolution nuclear medicine imaging method. However, this method does not have a dynamical imaging capability due to the principle on which it is based. In this research, we develop a nuclear medicine imaging system for dynamic cell observation. Specifically, in order to prevent broadening of the scintillation position because of scintillation light spreading in the scintillator, β-rays are detected by a thin scintillator plate. A scientific CMOS camera with low readout noise and high resolution was used to detect scintillation light. The scintillator plate was a CsI crystal connected to an optical fiber array. The scintillation light generated from the scintillator plate was extracted through optical fibers. The imaging lenses adopted in this research were a high-speed imaging and a conversion lens.Imaging resolution was adjusted to 6.5 × 6.5 mm 2 / pixel and exposure time was 10 s. In order to evaluate the imaging performance of the proposed system, we measured samples containing a radiopharmaceutical with a prototype system. In this measurement, two different activity 18 F-solutions were used as the imaging target. They were fixed with a uniform thickness of 0.4 mm. In the imaging results, we measured different image values depending on their activities. On the other hand, in the region of no 18 F-solutions, the image value was almost constant. The output had sufficient linearity for images with activity exceeding 0.05 Bq / pixel. Imaging results showed that our system has sufficient sensitivity for imaging uptake of 18 F by single cells.
UR - http://www.scopus.com/inward/record.url?scp=85058449860&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85058449860&partnerID=8YFLogxK
U2 - 10.1109/NSSMIC.2017.8533008
DO - 10.1109/NSSMIC.2017.8533008
M3 - Conference contribution
AN - SCOPUS:85058449860
T3 - 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2017 - Conference Proceedings
BT - 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2017 - Conference Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2017
Y2 - 21 October 2017 through 28 October 2017
ER -