Design of a conduction-cooled 9.4 T REBCO magnet for whole-body MRI systems

Hiroshi Miyazaki, Sadanori Iwai, Yasumi Otani, Masahiko Takahashi, Taizo Tosaka, Kenji Tasaki, Shunji Nomura, Tsutomu Kurusu, Hiroshi Ueda, So Noguchi, Atsushi Ishiyama, Shinichi Urayama, Hidenao Fukuyama

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

A project on the development of REBa2Cu3O7-δ (REBCO) magnets for ultra-high-field magnetic resonance imaging (MRI) was started in 2013. Since REBCO-coated conductors feature high mechanical strength under tensile stress and high critical current density, use of REBCO coils would allow superconducting magnets to be made smaller and lighter than conventional ones. In addition, a conduction-cooled superconducting magnet is simpler to use than one cooled by a liquid helium bath because the operation and maintenance of the cryogenic system become simpler, without the need to handle cryogenic fluid. Superconducting magnets for MRI require homogeneous, stable magnetic fields. The homogeneity of the magnetic field is highly dependent on the coil shape and position. Moreover, in REBCO magnets, the screening-current-induced magnetic field, which changes the magnetic field distribution of the magnet, is one of the critical issues. In order to evaluate the magnetic field homogeneity and the screening-current-induced magnetic field, a 1 T model magnet and some test coils were fabricated. From an evaluation of the 1 T model magnet, it was found that the main reason for magnetic field inhomogeneity was the tolerances in the z-axis positions of the coils, and therefore, it is important to control the gap between the single pancakes. In addition, we have already demonstrated the generation of an 8.27 T central magnetic field at 10 K with a small test coil. The screening-current-induced magnetic field was 0.43 T and was predictable by using an electromagnetic field simulation program. These results were reflected in the design of a conduction-cooled 9.4 T REBCO magnet for whole-body MRI systems. The magnet was composed of six main coils and two active shield coils. The total conductor length was 581 km, and the stored energy was 293 kJ. The field inhomogeneity was 24 ppm peak to peak and 3 ppm volume-root-mean-square (VRMS) for a 500 mm diameter spherical volume (DSV). The axial and radial 5 gauss line locations were less than 5 m and 4.2 m respectively.

Original languageEnglish
Article number104001
JournalSuperconductor Science and Technology
Volume29
Issue number10
DOIs
Publication statusPublished - Aug 12 2016

Fingerprint

Magnetic resonance
Imaging systems
Magnets
magnetic resonance
magnets
Magnetic fields
conduction
coils
magnetic fields
Superconducting magnets
Induced currents
superconducting magnets
Screening
screening
Cryogenics
homogeneity
inhomogeneity
conductors
cryogenic fluids
Imaging techniques

Keywords

  • conduction-cooled
  • REBCO
  • ultra-high-field MRI

ASJC Scopus subject areas

  • Ceramics and Composites
  • Condensed Matter Physics
  • Metals and Alloys
  • Materials Chemistry
  • Electrical and Electronic Engineering

Cite this

Miyazaki, H., Iwai, S., Otani, Y., Takahashi, M., Tosaka, T., Tasaki, K., ... Fukuyama, H. (2016). Design of a conduction-cooled 9.4 T REBCO magnet for whole-body MRI systems. Superconductor Science and Technology, 29(10), [104001]. https://doi.org/10.1088/0953-2048/29/10/104001

Design of a conduction-cooled 9.4 T REBCO magnet for whole-body MRI systems. / Miyazaki, Hiroshi; Iwai, Sadanori; Otani, Yasumi; Takahashi, Masahiko; Tosaka, Taizo; Tasaki, Kenji; Nomura, Shunji; Kurusu, Tsutomu; Ueda, Hiroshi; Noguchi, So; Ishiyama, Atsushi; Urayama, Shinichi; Fukuyama, Hidenao.

In: Superconductor Science and Technology, Vol. 29, No. 10, 104001, 12.08.2016.

Research output: Contribution to journalArticle

Miyazaki, H, Iwai, S, Otani, Y, Takahashi, M, Tosaka, T, Tasaki, K, Nomura, S, Kurusu, T, Ueda, H, Noguchi, S, Ishiyama, A, Urayama, S & Fukuyama, H 2016, 'Design of a conduction-cooled 9.4 T REBCO magnet for whole-body MRI systems', Superconductor Science and Technology, vol. 29, no. 10, 104001. https://doi.org/10.1088/0953-2048/29/10/104001
Miyazaki, Hiroshi ; Iwai, Sadanori ; Otani, Yasumi ; Takahashi, Masahiko ; Tosaka, Taizo ; Tasaki, Kenji ; Nomura, Shunji ; Kurusu, Tsutomu ; Ueda, Hiroshi ; Noguchi, So ; Ishiyama, Atsushi ; Urayama, Shinichi ; Fukuyama, Hidenao. / Design of a conduction-cooled 9.4 T REBCO magnet for whole-body MRI systems. In: Superconductor Science and Technology. 2016 ; Vol. 29, No. 10.
@article{5a42cdd65e36432498f0ffc4c0d1e237,
title = "Design of a conduction-cooled 9.4 T REBCO magnet for whole-body MRI systems",
abstract = "A project on the development of REBa2Cu3O7-δ (REBCO) magnets for ultra-high-field magnetic resonance imaging (MRI) was started in 2013. Since REBCO-coated conductors feature high mechanical strength under tensile stress and high critical current density, use of REBCO coils would allow superconducting magnets to be made smaller and lighter than conventional ones. In addition, a conduction-cooled superconducting magnet is simpler to use than one cooled by a liquid helium bath because the operation and maintenance of the cryogenic system become simpler, without the need to handle cryogenic fluid. Superconducting magnets for MRI require homogeneous, stable magnetic fields. The homogeneity of the magnetic field is highly dependent on the coil shape and position. Moreover, in REBCO magnets, the screening-current-induced magnetic field, which changes the magnetic field distribution of the magnet, is one of the critical issues. In order to evaluate the magnetic field homogeneity and the screening-current-induced magnetic field, a 1 T model magnet and some test coils were fabricated. From an evaluation of the 1 T model magnet, it was found that the main reason for magnetic field inhomogeneity was the tolerances in the z-axis positions of the coils, and therefore, it is important to control the gap between the single pancakes. In addition, we have already demonstrated the generation of an 8.27 T central magnetic field at 10 K with a small test coil. The screening-current-induced magnetic field was 0.43 T and was predictable by using an electromagnetic field simulation program. These results were reflected in the design of a conduction-cooled 9.4 T REBCO magnet for whole-body MRI systems. The magnet was composed of six main coils and two active shield coils. The total conductor length was 581 km, and the stored energy was 293 kJ. The field inhomogeneity was 24 ppm peak to peak and 3 ppm volume-root-mean-square (VRMS) for a 500 mm diameter spherical volume (DSV). The axial and radial 5 gauss line locations were less than 5 m and 4.2 m respectively.",
keywords = "conduction-cooled, REBCO, ultra-high-field MRI",
author = "Hiroshi Miyazaki and Sadanori Iwai and Yasumi Otani and Masahiko Takahashi and Taizo Tosaka and Kenji Tasaki and Shunji Nomura and Tsutomu Kurusu and Hiroshi Ueda and So Noguchi and Atsushi Ishiyama and Shinichi Urayama and Hidenao Fukuyama",
year = "2016",
month = "8",
day = "12",
doi = "10.1088/0953-2048/29/10/104001",
language = "English",
volume = "29",
journal = "Superconductor Science and Technology",
issn = "0953-2048",
publisher = "IOP Publishing Ltd.",
number = "10",

}

TY - JOUR

T1 - Design of a conduction-cooled 9.4 T REBCO magnet for whole-body MRI systems

AU - Miyazaki, Hiroshi

AU - Iwai, Sadanori

AU - Otani, Yasumi

AU - Takahashi, Masahiko

AU - Tosaka, Taizo

AU - Tasaki, Kenji

AU - Nomura, Shunji

AU - Kurusu, Tsutomu

AU - Ueda, Hiroshi

AU - Noguchi, So

AU - Ishiyama, Atsushi

AU - Urayama, Shinichi

AU - Fukuyama, Hidenao

PY - 2016/8/12

Y1 - 2016/8/12

N2 - A project on the development of REBa2Cu3O7-δ (REBCO) magnets for ultra-high-field magnetic resonance imaging (MRI) was started in 2013. Since REBCO-coated conductors feature high mechanical strength under tensile stress and high critical current density, use of REBCO coils would allow superconducting magnets to be made smaller and lighter than conventional ones. In addition, a conduction-cooled superconducting magnet is simpler to use than one cooled by a liquid helium bath because the operation and maintenance of the cryogenic system become simpler, without the need to handle cryogenic fluid. Superconducting magnets for MRI require homogeneous, stable magnetic fields. The homogeneity of the magnetic field is highly dependent on the coil shape and position. Moreover, in REBCO magnets, the screening-current-induced magnetic field, which changes the magnetic field distribution of the magnet, is one of the critical issues. In order to evaluate the magnetic field homogeneity and the screening-current-induced magnetic field, a 1 T model magnet and some test coils were fabricated. From an evaluation of the 1 T model magnet, it was found that the main reason for magnetic field inhomogeneity was the tolerances in the z-axis positions of the coils, and therefore, it is important to control the gap between the single pancakes. In addition, we have already demonstrated the generation of an 8.27 T central magnetic field at 10 K with a small test coil. The screening-current-induced magnetic field was 0.43 T and was predictable by using an electromagnetic field simulation program. These results were reflected in the design of a conduction-cooled 9.4 T REBCO magnet for whole-body MRI systems. The magnet was composed of six main coils and two active shield coils. The total conductor length was 581 km, and the stored energy was 293 kJ. The field inhomogeneity was 24 ppm peak to peak and 3 ppm volume-root-mean-square (VRMS) for a 500 mm diameter spherical volume (DSV). The axial and radial 5 gauss line locations were less than 5 m and 4.2 m respectively.

AB - A project on the development of REBa2Cu3O7-δ (REBCO) magnets for ultra-high-field magnetic resonance imaging (MRI) was started in 2013. Since REBCO-coated conductors feature high mechanical strength under tensile stress and high critical current density, use of REBCO coils would allow superconducting magnets to be made smaller and lighter than conventional ones. In addition, a conduction-cooled superconducting magnet is simpler to use than one cooled by a liquid helium bath because the operation and maintenance of the cryogenic system become simpler, without the need to handle cryogenic fluid. Superconducting magnets for MRI require homogeneous, stable magnetic fields. The homogeneity of the magnetic field is highly dependent on the coil shape and position. Moreover, in REBCO magnets, the screening-current-induced magnetic field, which changes the magnetic field distribution of the magnet, is one of the critical issues. In order to evaluate the magnetic field homogeneity and the screening-current-induced magnetic field, a 1 T model magnet and some test coils were fabricated. From an evaluation of the 1 T model magnet, it was found that the main reason for magnetic field inhomogeneity was the tolerances in the z-axis positions of the coils, and therefore, it is important to control the gap between the single pancakes. In addition, we have already demonstrated the generation of an 8.27 T central magnetic field at 10 K with a small test coil. The screening-current-induced magnetic field was 0.43 T and was predictable by using an electromagnetic field simulation program. These results were reflected in the design of a conduction-cooled 9.4 T REBCO magnet for whole-body MRI systems. The magnet was composed of six main coils and two active shield coils. The total conductor length was 581 km, and the stored energy was 293 kJ. The field inhomogeneity was 24 ppm peak to peak and 3 ppm volume-root-mean-square (VRMS) for a 500 mm diameter spherical volume (DSV). The axial and radial 5 gauss line locations were less than 5 m and 4.2 m respectively.

KW - conduction-cooled

KW - REBCO

KW - ultra-high-field MRI

UR - http://www.scopus.com/inward/record.url?scp=84989964164&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84989964164&partnerID=8YFLogxK

U2 - 10.1088/0953-2048/29/10/104001

DO - 10.1088/0953-2048/29/10/104001

M3 - Article

AN - SCOPUS:84989964164

VL - 29

JO - Superconductor Science and Technology

JF - Superconductor Science and Technology

SN - 0953-2048

IS - 10

M1 - 104001

ER -