Degree of Permanent Densification in Oxide Glasses upon Extreme Compression up to 24 GPa at Room Temperature

Sung Keun Lee, Kwan Young Mun, Yong Hyun Kim, Juho Lhee, Takuo Okuchi, Jung Fu Lin

    Research output: Contribution to journalArticlepeer-review

    14 Citations (Scopus)


    During the decompression of plastically deformed glasses at room temperature, some aspects of irreversible densification may be preserved. This densification has been primarily attributed to topological changes in glass networks. The changes in short-range structures like cation coordination numbers are often assumed to be relaxed upon decompression. Here the NMR results for aluminosilicate glass upon permanent densification up to 24 GPa reveal noticeable changes in the Al coordination number under pressure conditions as low as ∼6 GPa. A drastic increase in the highly coordinated Al fraction is evident over only a relatively narrow pressure range of up to ∼12 GPa, above which the coordination change becomes negligible up to 24 GPa. In contrast, Si coordination environments do not change, highlighting preferential coordination transformation during deformation. The observed trend in the coordination environment shows a remarkable similarity to the pressure-induced changes in the residual glass density, yielding a predictive relationship between the irreversible densification and the detailed structures under extreme compression. The results open a way to access the nature of plastic deformation in complex glasses at room temperature.

    Original languageEnglish
    Pages (from-to)2917-2924
    Number of pages8
    JournalJournal of Physical Chemistry Letters
    Issue number8
    Publication statusPublished - Apr 16 2020

    ASJC Scopus subject areas

    • Materials Science(all)
    • Physical and Theoretical Chemistry


    Dive into the research topics of 'Degree of Permanent Densification in Oxide Glasses upon Extreme Compression up to 24 GPa at Room Temperature'. Together they form a unique fingerprint.

    Cite this