Abstract
The crystal structure of Photosystem II (PSII) analyzed at a resolution of 1.9 Å revealed deformations of chlorin rings in the chlorophylls for the first time. We investigated the degrees of chlorin ring deformation and factors that contributed to them in the PSII crystal structure, using a normal-coordinate structural decomposition procedure. The out-of-plane distortion of the PD1 chlorin ring can be described predominantly by a large "doming mode" arising from the axial ligand, D1-His198, as well as the chlorophyll side chains and PSII protein environment. In contrast, the deformation of PD2 was caused by a "saddling mode" arising from the D2-Trp191 ring and the doming mode arising from D2-His197. Large ruffling modes, which were reported to lower the redox potential in heme proteins, were observed in PD1 and ChlD1, but not in PD2 and ChlD2. Furthermore, as PD1 possessed the largest doming mode among the reaction center chlorophylls, the corresponding bacteriochlorophyll PL possessed the largest doming mode in bacterial photosynthetic reaction centers. However, the majority of the redox potential shift in the protein environment was determined by the electrostatic environment. The difference in the chlorin ring deformation appears to directly refer to the difference in "the local steric protein environment" rather than the redox potential value in PSII.
Original language | English |
---|---|
Pages (from-to) | 4290-4299 |
Number of pages | 10 |
Journal | Biochemistry |
Volume | 51 |
Issue number | 21 |
DOIs | |
Publication status | Published - May 29 2012 |
ASJC Scopus subject areas
- Biochemistry