TY - GEN
T1 - Defect tolerance of holographic configurations in ORGAs
AU - Shinohara, Kouji
AU - Watanabe, Minoru
PY - 2008
Y1 - 2008
N2 - Optically reconfigurable gate arrays (ORGAs) have been developed as a type of multi-context field programmable gate array to realize fast reconfiguration and numerous reconfiguration contexts. Along with such advantages, ORGAs have high defect tolerance. They consist simply of a holographic memory, a laser diode array, and a gate array VLSI. Even if a gate array VLSI includes defective areas, the perfectly parallel programmable capability of ORGAs enables perfect avoidance of those defective areas through alternative use of other non-defective areas. Moreover, holographic memories to store contexts are known to have high defect tolerance because each bit of a reconfiguration context can be generated from the entire holographic memory. Moreover, the damage of some fraction rarely affects its diffraction pattern or a reconfiguration context. Therefore, ORGAs are very robust against component defects in devices such as laser arrays, gate arrays, and holographic memory, and are particularly useful for space applications, which require high reliability. However, to date, the degree to which defects in a holographic memory affects holographic configurations has never been analyzed. Therefore, this paper describes analysis results of defect limitations of holographic configurations.
AB - Optically reconfigurable gate arrays (ORGAs) have been developed as a type of multi-context field programmable gate array to realize fast reconfiguration and numerous reconfiguration contexts. Along with such advantages, ORGAs have high defect tolerance. They consist simply of a holographic memory, a laser diode array, and a gate array VLSI. Even if a gate array VLSI includes defective areas, the perfectly parallel programmable capability of ORGAs enables perfect avoidance of those defective areas through alternative use of other non-defective areas. Moreover, holographic memories to store contexts are known to have high defect tolerance because each bit of a reconfiguration context can be generated from the entire holographic memory. Moreover, the damage of some fraction rarely affects its diffraction pattern or a reconfiguration context. Therefore, ORGAs are very robust against component defects in devices such as laser arrays, gate arrays, and holographic memory, and are particularly useful for space applications, which require high reliability. However, to date, the degree to which defects in a holographic memory affects holographic configurations has never been analyzed. Therefore, this paper describes analysis results of defect limitations of holographic configurations.
UR - http://www.scopus.com/inward/record.url?scp=51049087281&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=51049087281&partnerID=8YFLogxK
U2 - 10.1109/IPDPS.2008.4536537
DO - 10.1109/IPDPS.2008.4536537
M3 - Conference contribution
AN - SCOPUS:51049087281
SN - 9781424416943
T3 - IPDPS Miami 2008 - Proceedings of the 22nd IEEE International Parallel and Distributed Processing Symposium, Program and CD-ROM
BT - IPDPS Miami 2008 - Proceedings of the 22nd IEEE International Parallel and Distributed Processing Symposium, Program and CD-ROM
T2 - IPDPS 2008 - 22nd IEEE International Parallel and Distributed Processing Symposium
Y2 - 14 April 2008 through 18 April 2008
ER -