Decreased Expression of Serine/Arginine-Rich Splicing Factor 1 in T Cells From Patients With Active Systemic Lupus Erythematosus Accounts for Reduced Expression of RasGRP1 and DNA Methyltransferase 1

Michihiro Kono, Takashi Kurita, Shinsuke Yasuda, Michihito Kono, Yuichiro Fujieda, Toshiyuki Bohgaki, Takayuki Katsuyama, George C. Tsokos, Vaishali R. Moulton, Tatsuya Atsumi

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Objective: T cells from systemic lupus erythematosus (SLE) patients have reduced protein levels of RasGRP1, a guanine nucleotide exchange factor for Ras, and increased transcript of alternatively spliced (AS) forms lacking exon 11. Serine/arginine-rich splicing factor 1 (SRSF1) binds pre–messenger RNA (pre-mRNA) to regulate AS forms of several genes, including CD3ζ in SLE T cells. This study was undertaken to assess whether SRSF1 controls the expression of RasGRP1 in T cells from patients with SLE. Methods: We studied T cells from 45 SLE patients and 18 healthy subjects. Expression levels of SRSF1, wild-type (WT) RasGRP1, and DNA methyltransferase 1 (DNMT1) were assessed by quantitative polymerase chain reaction. Direct binding of SRSF1 to exon 11 of RasGRP1 mRNA was evaluated with an oligonucleotide–protein pulldown assay. Healthy T cells and SLE T cells were treated with SRSF1-specific small interfering RNA or SRSF1 expression vector, respectively, and then evaluated for mRNA/protein expression. Results: SRSF1 expression levels were significantly lower in T cells from SLE patients compared to those from healthy subjects, and correlated inversely with disease activity and positively with levels of RasGRP1-WT and DNMT1. SRSF1 bound directly to exon 11 of RasGRP1 mRNA. Silencing of SRSF1 in human T cells led to increased ratios of RasGRP1-AS to RasGRP1-WT and decreased levels of RasGRP1 protein, whereas overexpression of SRSF1 in SLE T cells caused recovery of RasGRP1, which in turn induced DNMT1/interleukin-2 expression. Conclusion: SRSF1 controls the alternative splicing of RasGRP1 and subsequent protein expression. Our findings extend evidence that alternative splicing plays a central role in the aberrant T cell function in patients with SLE by controlling the expression of multiple genes.

Original languageEnglish
Pages (from-to)2046-2056
Number of pages11
JournalArthritis and Rheumatology
Volume70
Issue number12
DOIs
Publication statusPublished - Dec 2018

ASJC Scopus subject areas

  • Immunology and Allergy
  • Rheumatology
  • Immunology

Fingerprint Dive into the research topics of 'Decreased Expression of Serine/Arginine-Rich Splicing Factor 1 in T Cells From Patients With Active Systemic Lupus Erythematosus Accounts for Reduced Expression of RasGRP1 and DNA Methyltransferase 1'. Together they form a unique fingerprint.

Cite this