Contribution of glucan-binding protein A to firm and stable biofilm formation by Streptococcus mutans

Y. Matsumi, Kazuyo Fujita, Yukiko Takashima, K. Yanagida, Y. Morikawa, M. Matsumoto-Nakano

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

Glucan-binding proteins (Gbps) of Streptococcus mutans, a major pathogen of dental caries, mediate the binding of glucans synthesized from sucrose by the action of glucosyltransferases (GTFs) encoded by gtfB, gtfC, and gtfD. Several stress proteins, including DnaK and GroEL encoded by dnaK and groEL, are related to environmental stress tolerance. The contribution of Gbp expression to biofilm formation was analyzed by focusing on the expression levels of genes encoding GTFs and stress proteins. Biofilm-forming assays were performed using GbpA-, GbpB-, and GbpC-deficient mutant strains and the parental strain MT8148. The expression levels of gtfB, gtfC, gtfD, dnaK, and groEL were evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Furthermore, the structure of biofilms formed by these Gbp-deficient mutant strains was observed using confocal laser scanning microscopy (CLSM). Biofilm-forming assay findings demonstrated that the amount formed by the GbpA-deficient mutant strain (AD1) was nearly the same as that by the parental strain, while the GbpB- and GbpC-deficient mutant strains produced lower amounts than MT8148. Furthermore, RT-qPCR assay results showed that the expressions of gtfB, dnaK, and groEL in AD1 were elevated compared with MT8148. CLSM also revealed that the structure of biofilm formed by AD1 was prominently different compared with that formed by the parental strain. These results suggest that a defect in GbpA influences the expression of genes controlling biofilm formation, indicating its importance as a protein for firm and stable biofilm formation.

Original languageEnglish
Pages (from-to)217-226
Number of pages10
JournalMolecular Oral Microbiology
Volume30
Issue number3
DOIs
Publication statusPublished - Jun 1 2015

Keywords

  • Biofilm
  • Glucan-binding protein
  • Streptococcus mutans

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Dentistry(all)
  • Microbiology (medical)

Fingerprint

Dive into the research topics of 'Contribution of glucan-binding protein A to firm and stable biofilm formation by Streptococcus mutans'. Together they form a unique fingerprint.

Cite this