

A323602


Smallest b > 1 not already in the sequence such that b^(c1) == 1 (mod c), i.e., c is a baseb Fermat pseudoprime, where c is the nth composite number (A002808).


1



5, 7, 9, 8, 11, 13, 15, 4, 17, 19, 21, 20, 23, 25, 18, 27, 26, 29, 31, 33, 10, 35, 6, 37, 39, 14, 41, 43, 45, 19, 47, 49, 30, 51, 16, 53, 55, 34, 57, 56, 59, 61, 63, 62, 65, 12, 67, 69, 22, 71, 73, 75, 74, 77, 76, 79, 81, 80, 83, 85, 38, 87, 28, 89, 91, 3, 93
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Is this a permutation of the positive integers > 1?


LINKS

Table of n, a(n) for n=1..67.


PROG

(PARI) my(v=vector(1)); forcomposite(c=1, 50, my(b=2); while(Mod(b, c)^(c1)!=1, b++; if(Mod(b, c)^(c1)==1, for(k=1, #v, if(b==v[k], b++)))); v=concat(v, b); print1(v[#v], ", "))


CROSSREFS

Cf. A002808, A242742, A259234, A323603.
Sequence in context: A109352 A228578 A242742 * A164029 A143730 A194394
Adjacent sequences: A323599 A323600 A323601 * A323603 A323604 A323605


KEYWORD

nonn


AUTHOR

Felix FrÃ¶hlich, Jan 19 2019


STATUS

approved



