TY - JOUR
T1 - Construction of a consensus linkage map for red clover (Trifolium pratense L.)
AU - Isobe, Sachiko
AU - Kölliker, Roland
AU - Hisano, Hiroshi
AU - Sasamoto, Shigemi
AU - Wada, Tshyuko
AU - Klimenko, Irina
AU - Okumura, Kenji
AU - Tabata, Satoshi
N1 - Funding Information:
This work was supported by the Kazusa DNA Research Institute Foundation, the National Agricultural Research Center for the Hokkaido Region, and the Ministry of Agriculture, Forestry and Fisheries, with the cooperation of the "Development of DNA-Marker-aided Selection Technology for Plants and Animals' program".
PY - 2009
Y1 - 2009
N2 - Background. Red clover (Trifolium pratense L.) is a major forage legume that has a strong self-incompatibility system and exhibits high genetic diversity within populations. For several crop species, integrated consensus linkage maps that combine information from multiple mapping populations have been developed. For red clover, three genetic linkage maps have been published, but the information in these existing maps has not been integrated. Results. A consensus linkage map was constructed using six mapping populations originating from eight parental accessions. Three of the six mapping populations were established for this study. The integrated red clover map was composed of 1804 loci, including 1414 microsatellite loci, 181 amplified fragment length polymorphism (AFLP) loci and 204 restriction fragment length polymorphism (RFLP) loci, in seven linkage groups. The average distance between loci and the total length of the consensus map were 0.46 cM and 836.6 cM, respectively. The locus order on the consensus map correlated highly with that of accession-specific maps. Segregation distortion was observed across linkage groups. We investigated genome-wide allele frequency in 1144 red clover individuals using 462 microsatellite loci randomly chosen from the consensus map. The average number of alleles and polymorphism information content (PIC) were 9.17 and 0.69, respectively. Conclusion. A consensus genetic linkage map for red clover was constructed for the first time based on six mapping populations. The locus order on the consensus map was highly conserved among linkage maps and was sufficiently reliable for use as a reference for genetic analysis of random red clover germplasms.
AB - Background. Red clover (Trifolium pratense L.) is a major forage legume that has a strong self-incompatibility system and exhibits high genetic diversity within populations. For several crop species, integrated consensus linkage maps that combine information from multiple mapping populations have been developed. For red clover, three genetic linkage maps have been published, but the information in these existing maps has not been integrated. Results. A consensus linkage map was constructed using six mapping populations originating from eight parental accessions. Three of the six mapping populations were established for this study. The integrated red clover map was composed of 1804 loci, including 1414 microsatellite loci, 181 amplified fragment length polymorphism (AFLP) loci and 204 restriction fragment length polymorphism (RFLP) loci, in seven linkage groups. The average distance between loci and the total length of the consensus map were 0.46 cM and 836.6 cM, respectively. The locus order on the consensus map correlated highly with that of accession-specific maps. Segregation distortion was observed across linkage groups. We investigated genome-wide allele frequency in 1144 red clover individuals using 462 microsatellite loci randomly chosen from the consensus map. The average number of alleles and polymorphism information content (PIC) were 9.17 and 0.69, respectively. Conclusion. A consensus genetic linkage map for red clover was constructed for the first time based on six mapping populations. The locus order on the consensus map was highly conserved among linkage maps and was sufficiently reliable for use as a reference for genetic analysis of random red clover germplasms.
UR - http://www.scopus.com/inward/record.url?scp=67649094001&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67649094001&partnerID=8YFLogxK
U2 - 10.1186/1471-2229-9-57
DO - 10.1186/1471-2229-9-57
M3 - Article
C2 - 19442273
AN - SCOPUS:67649094001
SN - 1471-2229
VL - 9
JO - BMC Plant Biology
JF - BMC Plant Biology
M1 - 57
ER -