### Abstract

Constant temperature molecular dynamics calculation has been carried out on Lennard-Jones liquid simulating argon. This method, proposed recently by Andersen, intends to transform the system from microcanonical to canonical ensemble and to keep the temperature of the system a constant value by the generation of random velocities when molecules exchange their energies with heat reservoir with a certain probability. A simple scheme is given for the estimation of collision probability and the effect of introducing this probability on dynamic behavior is examined in detail for 108 argon atoms as a test simulation. It is established that a collision probability of 0.01 is sufficient to realize the constancy of temperature reasonably well with no appreciable disturbance in the dynamic behavior. A model of pure water with Matsuoka-Clementi-Yoshimine (MCY) potential has also been simulated in the same manner. In the case of 2/16 MCY water at 298.15 K, the temperature difference is only 0.73 K with a collision probability of 0.005. Various static properties of MCY water have been calculated with reasonable agreement with those by previous Monte Carlo calculation, and moreover, the dynamic behavior calculated for MCY water gives a satisfactory picture on both translational and rotational motions in water, including reasonable agreement of diffusion coefficient with experimental datum.

Original language | English |
---|---|

Pages (from-to) | 2626-2634 |

Number of pages | 9 |

Journal | The Journal of Chemical Physics |

Volume | 78 |

Issue number | 5 |

Publication status | Published - 1983 |

Externally published | Yes |

### Fingerprint

### ASJC Scopus subject areas

- Atomic and Molecular Physics, and Optics

### Cite this

*The Journal of Chemical Physics*,

*78*(5), 2626-2634.

**Constant temperature molecular dynamics calculation on Lennard-Jones fluid and its application to water.** / Tanaka, Hideki; Nakanishi, Koichiro; Watanabe, Nobuatsu.

Research output: Contribution to journal › Article

*The Journal of Chemical Physics*, vol. 78, no. 5, pp. 2626-2634.

}

TY - JOUR

T1 - Constant temperature molecular dynamics calculation on Lennard-Jones fluid and its application to water

AU - Tanaka, Hideki

AU - Nakanishi, Koichiro

AU - Watanabe, Nobuatsu

PY - 1983

Y1 - 1983

N2 - Constant temperature molecular dynamics calculation has been carried out on Lennard-Jones liquid simulating argon. This method, proposed recently by Andersen, intends to transform the system from microcanonical to canonical ensemble and to keep the temperature of the system a constant value by the generation of random velocities when molecules exchange their energies with heat reservoir with a certain probability. A simple scheme is given for the estimation of collision probability and the effect of introducing this probability on dynamic behavior is examined in detail for 108 argon atoms as a test simulation. It is established that a collision probability of 0.01 is sufficient to realize the constancy of temperature reasonably well with no appreciable disturbance in the dynamic behavior. A model of pure water with Matsuoka-Clementi-Yoshimine (MCY) potential has also been simulated in the same manner. In the case of 2/16 MCY water at 298.15 K, the temperature difference is only 0.73 K with a collision probability of 0.005. Various static properties of MCY water have been calculated with reasonable agreement with those by previous Monte Carlo calculation, and moreover, the dynamic behavior calculated for MCY water gives a satisfactory picture on both translational and rotational motions in water, including reasonable agreement of diffusion coefficient with experimental datum.

AB - Constant temperature molecular dynamics calculation has been carried out on Lennard-Jones liquid simulating argon. This method, proposed recently by Andersen, intends to transform the system from microcanonical to canonical ensemble and to keep the temperature of the system a constant value by the generation of random velocities when molecules exchange their energies with heat reservoir with a certain probability. A simple scheme is given for the estimation of collision probability and the effect of introducing this probability on dynamic behavior is examined in detail for 108 argon atoms as a test simulation. It is established that a collision probability of 0.01 is sufficient to realize the constancy of temperature reasonably well with no appreciable disturbance in the dynamic behavior. A model of pure water with Matsuoka-Clementi-Yoshimine (MCY) potential has also been simulated in the same manner. In the case of 2/16 MCY water at 298.15 K, the temperature difference is only 0.73 K with a collision probability of 0.005. Various static properties of MCY water have been calculated with reasonable agreement with those by previous Monte Carlo calculation, and moreover, the dynamic behavior calculated for MCY water gives a satisfactory picture on both translational and rotational motions in water, including reasonable agreement of diffusion coefficient with experimental datum.

UR - http://www.scopus.com/inward/record.url?scp=0039274975&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0039274975&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0039274975

VL - 78

SP - 2626

EP - 2634

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 5

ER -