Conformational change of single-stranded RNAs induced by liposome binding

Keishi Suga, Tomoyuki Tanabe, Hibiki Tomita, Toshinori Shimanouchi, Hiroshi Umakoshi

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

The interaction between single-stranded RNAs and liposomes was studied using UV, Fourier Transform Infrared spectroscopy (FTIR) and Circular Dichroism spectroscopy (CD). The effect of the surface characteristics of liposomes, which were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and modified with cholesterol (Ch) or 1,2-dioleoyl-3-trimethylammonium propane (DOTAP), on the liposome-RNA interaction was investigated. The fluorescence of 6-(p-toluidino)naphthalene-2-sulfonate (TNS) embedded in the liposome surface (ε=30-40) was decreased in the presence of tRNA, suggesting that single-stranded tRNA could bind onto the liposome. The dehydration of -PO2 - -, guanine (G) and cytosine (C) of tRNA molecules in the presence of liposomes suggested both an electrostatic interaction (phosphate backbone of tRNA and trimethylammonium group of POPC, DOTAP) and a hydrophobic interaction (guanine or cytosine of tRNA and aliphatic tail of lipid). The tRNA conformation on the liposome was determined by CD spectroscopy. POPC/Ch (70/30) maintained tRNA conformation without any denaturation, while POPC/DOTAP(70/30) drastically denatured it. The mRNA translation was evaluated in an Escherichia coli cell-free translation system. POPC/Ch(70/30) enhanced expression of green fluorescent protein (GFP) (116) while POPC/DOTAP(70/30) inhibited (37), suggesting that the conformation of RNAs was closely related to the translation efficiency. Therefore, single-stranded RNAs could bind to liposomal membranes through electrostatic and hydrophobic attraction, after which conformational changes were induced depending on the liposome characteristics.

Original languageEnglish
Pages (from-to)8891-8900
Number of pages10
JournalNucleic acids research.
Volume39
Issue number20
DOIs
Publication statusPublished - Nov 2011
Externally publishedYes

    Fingerprint

ASJC Scopus subject areas

  • Genetics

Cite this