Abstract
LiteBIRD has been selected as JAXA's strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of-56 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT: 34-161 GHz), one of LiteBIRD's onboard telescopes. It has a wide field-of-view (18° x 9°) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90a-▪ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented.
Original language | English |
---|---|
Title of host publication | Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X |
Editors | Jonas Zmuidzinas, Jian-Rong Gao |
Publisher | SPIE |
ISBN (Electronic) | 9781510636934 |
DOIs | |
Publication status | Published - 2020 |
Event | Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X 2020 - Virtual, Online, United States Duration: Dec 14 2020 → Dec 22 2020 |
Publication series
Name | Proceedings of SPIE - The International Society for Optical Engineering |
---|---|
Volume | 11453 |
ISSN (Print) | 0277-786X |
ISSN (Electronic) | 1996-756X |
Conference
Conference | Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X 2020 |
---|---|
Country/Territory | United States |
City | Virtual, Online |
Period | 12/14/20 → 12/22/20 |
Keywords
- Cosmic microwave background
- cryogenic telescope
- millimeter-wave polarization
- space program
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Computer Science Applications
- Applied Mathematics
- Electrical and Electronic Engineering
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD. / Sekimoto, Y.; Ade, P. A.R.; Adler, A.; Allys, E.; Arnold, K.; Auguste, D.; Aumont, J.; Aurlien, R.; Austermann, J.; Baccigalupi, C.; Banday, A. J.; Banerji, R.; Barreiro, R. B.; Basak, S.; Beall, J.; Beck, D.; Beckman, S.; Bermejo, J.; De Bernardis, P.; Bersanelli, M.; Bonis, J.; Borrill, J.; Boulanger, F.; Bounissou, S.; Brilenkov, M.; Brown, M.; Bucher, M.; Calabrese, E.; Campeti, P.; Carones, A.; Casas, F. J.; Challinor, A.; Chan, V.; Cheung, K.; Chinone, Y.; Cliche, J. F.; Colombo, L.; Columbro, F.; Cubas, J.; Cukierman, A.; Curtis, D.; D'Alessandro, G.; Dachlythra, N.; De Petris, M.; Dickinson, C.; Diego-Palazuelos, P.; Dobbs, M.; Dotani, T.; Duband, L.; Duff, S.; Duval, J. M.; Ebisawa, K.; Elleflot, T.; Eriksen, H. K.; Errard, J.; Essinger-Hileman, T.; Finelli, F.; Flauger, R.; Franceschet, C.; Fuskeland, U.; Galloway, M.; Ganga, K.; Gao, J. R.; Genova-Santos, R.; Gerbino, M.; Gervasi, M.; Ghigna, T.; Gjerløw, E.; Gradziel, M. L.; Grain, J.; Grupp, F.; Gruppuso, A.; Gudmundsson, J. E.; De Haan, T.; Halverson, N. W.; Hargrave, P.; Hasebe, T.; Hasegawa, M.; Hattori, M.; Hazumi, M.; Henrot-Versille, S.; Herman, D.; Herranz, D.; Hill, C. A.; Hilton, G.; Hirota, Y.; Hivon, E.; Hlozek, R. A.; Hoshino, Y.; De La Hoz, E.; Hubmayr, J.; Ichiki, K.; Iida, T.; Imada, H.; Ishimura, K.; Ishino, H.; Jaehnig, G.; Kaga, T.; Kashima, S.; Katayama, N.; Kato, A.; Kawasaki, T.; Keskitalo, R.; Kisner, T.; Kobayashi, Y.; Kogiso, N.; Kogut, A.; Kohri, K.; Komatsu, E.; Komatsu, K.; Konishi, K.; Krachmalnicoff, N.; Kreykenbohm, I.; Kuo, C. L.; Kushino, A.; Lamagna, L.; Lanen, J. V.; Lattanzi, M.; Lee, A. T.; Leloup, C.; Levrier, F.; Linder, E.; Louis, T.; Luzzi, G.; MacIaszek, T.; Maffei, B.; Maino, D.; Maki, M.; Mandelli, S.; Martinez-Gonzalez, E.; Masi, S.; Matsumura, T.; Mennella, A.; Migliaccio, M.; Minami, Y.; Mitsuda, K.; Montgomery, J.; Montier, L.; Morgante, G.; Mot, B.; Murata, Y.; Murphy, J. A.; Nagai, M.; Nagano, Y.; Nagasaki, T.; Nagata, R.; Nakamura, S.; Namikawa, T.; Natoli, P.; Nerval, S.; Nishibori, T.; Nishino, H.; O Sullivan, C.; Ogawa, H.; Ogawa, H.; Oguri, S.; Ohsaki, H.; Ohta, I. S.; Okada, N.; Okada, N.; Pagano, L.; Paiella, A.; Paoletti, D.; Patanchon, G.; Peloton, J.; Piacentini, F.; Pisano, G.; Polenta, G.; Poletti, D.; Prouve, T.; Puglisi, G.; Rambaud, D.; Raum, C.; Realini, S.; Reinecke, M.; Remazeilles, M.; Ritacco, A.; Roudil, G.; Rubino-Martin, J. A.; Russell, M.; Sakurai, H.; Sakurai, Y.; Sandri, M.; Sasaki, M.; Savini, G.; Scott, D.; Seibert, J.; Sherwin, B.; Shinozaki, K.; Shiraishi, M.; Shirron, P.; Signorelli, G.; Smecher, G.; Stever, S.; Stompor, R.; Sugai, H.; Sugiyama, S.; Suzuki, A.; Suzuki, J.; Svalheim, T. L.; Switzer, E.; Takaku, R.; Takakura, H.; Takakura, S.; Takase, Y.; Takeda, Y.; Tartari, A.; Taylor, E.; Terao, Y.; Thommesen, H.; Thompson, K. L.; Thorne, B.; Toda, T.; Tomasi, M.; Tominaga, M.; Trappe, N.; Tristram, M.; Tsuji, M.; Tsujimoto, M.; Tucker, C.; Ullom, J.; Vermeulen, G.; Vielva, P.; Villa, F.; Vissers, M.; Vittorio, N.; Wehus, I.; Weller, J.; Westbrook, B.; Wilms, J.; Winter, B.; Wollack, E. J.; Yamasaki, N. Y.; Yoshida, T.; Yumoto, J.; Zannoni, M.; Zonca, A.
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X. ed. / Jonas Zmuidzinas; Jian-Rong Gao. SPIE, 2020. 1145310 (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11453).Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
}
TY - GEN
T1 - Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD
AU - Sekimoto, Y.
AU - Ade, P. A.R.
AU - Adler, A.
AU - Allys, E.
AU - Arnold, K.
AU - Auguste, D.
AU - Aumont, J.
AU - Aurlien, R.
AU - Austermann, J.
AU - Baccigalupi, C.
AU - Banday, A. J.
AU - Banerji, R.
AU - Barreiro, R. B.
AU - Basak, S.
AU - Beall, J.
AU - Beck, D.
AU - Beckman, S.
AU - Bermejo, J.
AU - De Bernardis, P.
AU - Bersanelli, M.
AU - Bonis, J.
AU - Borrill, J.
AU - Boulanger, F.
AU - Bounissou, S.
AU - Brilenkov, M.
AU - Brown, M.
AU - Bucher, M.
AU - Calabrese, E.
AU - Campeti, P.
AU - Carones, A.
AU - Casas, F. J.
AU - Challinor, A.
AU - Chan, V.
AU - Cheung, K.
AU - Chinone, Y.
AU - Cliche, J. F.
AU - Colombo, L.
AU - Columbro, F.
AU - Cubas, J.
AU - Cukierman, A.
AU - Curtis, D.
AU - D'Alessandro, G.
AU - Dachlythra, N.
AU - De Petris, M.
AU - Dickinson, C.
AU - Diego-Palazuelos, P.
AU - Dobbs, M.
AU - Dotani, T.
AU - Duband, L.
AU - Duff, S.
AU - Duval, J. M.
AU - Ebisawa, K.
AU - Elleflot, T.
AU - Eriksen, H. K.
AU - Errard, J.
AU - Essinger-Hileman, T.
AU - Finelli, F.
AU - Flauger, R.
AU - Franceschet, C.
AU - Fuskeland, U.
AU - Galloway, M.
AU - Ganga, K.
AU - Gao, J. R.
AU - Genova-Santos, R.
AU - Gerbino, M.
AU - Gervasi, M.
AU - Ghigna, T.
AU - Gjerløw, E.
AU - Gradziel, M. L.
AU - Grain, J.
AU - Grupp, F.
AU - Gruppuso, A.
AU - Gudmundsson, J. E.
AU - De Haan, T.
AU - Halverson, N. W.
AU - Hargrave, P.
AU - Hasebe, T.
AU - Hasegawa, M.
AU - Hattori, M.
AU - Hazumi, M.
AU - Henrot-Versille, S.
AU - Herman, D.
AU - Herranz, D.
AU - Hill, C. A.
AU - Hilton, G.
AU - Hirota, Y.
AU - Hivon, E.
AU - Hlozek, R. A.
AU - Hoshino, Y.
AU - De La Hoz, E.
AU - Hubmayr, J.
AU - Ichiki, K.
AU - Iida, T.
AU - Imada, H.
AU - Ishimura, K.
AU - Ishino, H.
AU - Jaehnig, G.
AU - Kaga, T.
AU - Kashima, S.
AU - Katayama, N.
AU - Kato, A.
AU - Kawasaki, T.
AU - Keskitalo, R.
AU - Kisner, T.
AU - Kobayashi, Y.
AU - Kogiso, N.
AU - Kogut, A.
AU - Kohri, K.
AU - Komatsu, E.
AU - Komatsu, K.
AU - Konishi, K.
AU - Krachmalnicoff, N.
AU - Kreykenbohm, I.
AU - Kuo, C. L.
AU - Kushino, A.
AU - Lamagna, L.
AU - Lanen, J. V.
AU - Lattanzi, M.
AU - Lee, A. T.
AU - Leloup, C.
AU - Levrier, F.
AU - Linder, E.
AU - Louis, T.
AU - Luzzi, G.
AU - MacIaszek, T.
AU - Maffei, B.
AU - Maino, D.
AU - Maki, M.
AU - Mandelli, S.
AU - Martinez-Gonzalez, E.
AU - Masi, S.
AU - Matsumura, T.
AU - Mennella, A.
AU - Migliaccio, M.
AU - Minami, Y.
AU - Mitsuda, K.
AU - Montgomery, J.
AU - Montier, L.
AU - Morgante, G.
AU - Mot, B.
AU - Murata, Y.
AU - Murphy, J. A.
AU - Nagai, M.
AU - Nagano, Y.
AU - Nagasaki, T.
AU - Nagata, R.
AU - Nakamura, S.
AU - Namikawa, T.
AU - Natoli, P.
AU - Nerval, S.
AU - Nishibori, T.
AU - Nishino, H.
AU - O Sullivan, C.
AU - Ogawa, H.
AU - Ogawa, H.
AU - Oguri, S.
AU - Ohsaki, H.
AU - Ohta, I. S.
AU - Okada, N.
AU - Okada, N.
AU - Pagano, L.
AU - Paiella, A.
AU - Paoletti, D.
AU - Patanchon, G.
AU - Peloton, J.
AU - Piacentini, F.
AU - Pisano, G.
AU - Polenta, G.
AU - Poletti, D.
AU - Prouve, T.
AU - Puglisi, G.
AU - Rambaud, D.
AU - Raum, C.
AU - Realini, S.
AU - Reinecke, M.
AU - Remazeilles, M.
AU - Ritacco, A.
AU - Roudil, G.
AU - Rubino-Martin, J. A.
AU - Russell, M.
AU - Sakurai, H.
AU - Sakurai, Y.
AU - Sandri, M.
AU - Sasaki, M.
AU - Savini, G.
AU - Scott, D.
AU - Seibert, J.
AU - Sherwin, B.
AU - Shinozaki, K.
AU - Shiraishi, M.
AU - Shirron, P.
AU - Signorelli, G.
AU - Smecher, G.
AU - Stever, S.
AU - Stompor, R.
AU - Sugai, H.
AU - Sugiyama, S.
AU - Suzuki, A.
AU - Suzuki, J.
AU - Svalheim, T. L.
AU - Switzer, E.
AU - Takaku, R.
AU - Takakura, H.
AU - Takakura, S.
AU - Takase, Y.
AU - Takeda, Y.
AU - Tartari, A.
AU - Taylor, E.
AU - Terao, Y.
AU - Thommesen, H.
AU - Thompson, K. L.
AU - Thorne, B.
AU - Toda, T.
AU - Tomasi, M.
AU - Tominaga, M.
AU - Trappe, N.
AU - Tristram, M.
AU - Tsuji, M.
AU - Tsujimoto, M.
AU - Tucker, C.
AU - Ullom, J.
AU - Vermeulen, G.
AU - Vielva, P.
AU - Villa, F.
AU - Vissers, M.
AU - Vittorio, N.
AU - Wehus, I.
AU - Weller, J.
AU - Westbrook, B.
AU - Wilms, J.
AU - Winter, B.
AU - Wollack, E. J.
AU - Yamasaki, N. Y.
AU - Yoshida, T.
AU - Yumoto, J.
AU - Zannoni, M.
AU - Zonca, A.
N1 - Funding Information: This work is supported in Japan by ISAS/JAXA for Pre-Phase A2 studies, by the acceleration program of JAXA research and development directorate, by the World Premier International Research Center Initiative (WPI) of MEXT, by the JSPS Core-to-Core Program of A. Advanced Research Networks, and by JSPS KAKENHI Grant Numbers JP15H05891, JP17H01115, and JP17H01125. The Italian LiteBIRD phase A contribution is supported by the Italian Space Agency (ASI Grants No. 2020-9-HH.0 and 2016-24-H.1-2018), the National Institute for Nuclear Physics (INFN) and the National Institute for Astrophysics (INAF). The French LiteBIRD phase A contribution is supported by the Centre National d’Etudes Spatiale (CNES), by the Centre National de la Recherche Scientifique (CNRS), and by the Commissariat à l’Energie Atomique (CEA). The Canadian contribution is supported by the Canadian Space Agency. The US contribution is supported by NASA grant no. 80NSSC18K0132. Norwegian participation in LiteBIRD is supported by the Research Council of Norway (Grant No. 263011). The Spanish LiteBIRD phase A contribution is supported by the Spanish Agencia Estatal de Investigación (AEI), project refs. PID2019-110610RB-C21 and AYA2017-84185-P. Funds that support the Swedish contributions come from the Swedish National Space Agency (SNSA/Rymdstyrelsen) and the Swedish Research Council (Reg. no. 2019-03959). The German participation in LiteBIRD is supported in part by the Excellence Cluster ORIGINS, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (Grant No. EXC-2094 - 390783311). This research used resources of the Central Computing System owned and operated by the Computing Research Center at KEK, as well as resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy. Publisher Copyright: © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
PY - 2020
Y1 - 2020
N2 - LiteBIRD has been selected as JAXA's strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of-56 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT: 34-161 GHz), one of LiteBIRD's onboard telescopes. It has a wide field-of-view (18° x 9°) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90a-▪ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented.
AB - LiteBIRD has been selected as JAXA's strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of-56 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT: 34-161 GHz), one of LiteBIRD's onboard telescopes. It has a wide field-of-view (18° x 9°) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90a-▪ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented.
KW - Cosmic microwave background
KW - cryogenic telescope
KW - millimeter-wave polarization
KW - space program
UR - http://www.scopus.com/inward/record.url?scp=85100032466&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100032466&partnerID=8YFLogxK
U2 - 10.1117/12.2561841
DO - 10.1117/12.2561841
M3 - Conference contribution
AN - SCOPUS:85100032466
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X
A2 - Zmuidzinas, Jonas
A2 - Gao, Jian-Rong
PB - SPIE
T2 - Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X 2020
Y2 - 14 December 2020 through 22 December 2020
ER -