TY - JOUR
T1 - Comparison of Orifice Area by Transthoracic Three-Dimensional Doppler Echocardiography Versus Proximal Isovelocity Surface Area (PISA) Method for Assessment of Mitral Regurgitation
AU - Iwakura, Katsuomi
AU - Ito, Hiroshi
AU - Kawano, Shigeo
AU - Okamura, Atsushi
AU - Kurotobi, Toshiya
AU - Date, Motoo
AU - Inoue, Koichi
AU - Fujii, Kenshi
PY - 2006/6/1
Y1 - 2006/6/1
N2 - Effective regurgitant orifice area is a useful index of the severity of mitral regurgitation (MR). The calculation of regurgitant orifice area using the proximal isovelocity surface area (PISA) method has some technical limitations. Three-dimensional reconstruction of the MR jet was performed using the Live 3D system on a Sonos 7500 to measure regurgitant orifice area directly in 109 cases of MR. Regurgitant orifice area was also measured by quantitative 2-dimensional echocardiography and by the PISA method. To analyze the shape of the regurgitant orifice, the ratio of the long axis to the short axis of the orifice (the L/S ratio) was calculated. Regurgitant orifice area on 3-dimensional echocardiography showed an almost identical correlation with that obtained by quantitative echocardiography (r = 0.91, p <0.0001, slope = 0.97) regardless of the L/S ratio. It was also significantly correlated with orifice area obtained using the PISA method (r = 0.93, p <0.0001). However, orifice area on 3-dimensional echocardiography was significantly larger than that obtained using the PISA method in the whole study group and in the 62 cases of MR with L/S ratios >1.5, whereas the correlation was almost identical in cases of MR with L/S ratios ≤1.5. Orifice area obtained using the PISA method also underestimated that obtained by quantitative echocardiography in cases of MR with L/S ratios >1.5. Three-dimensional echocardiography provided robust values independent of the eccentricity of the MR jet or of cardiac rhythm. In conclusion, the direct measurement of the regurgitant orifice area of MR with 3-dimensional Doppler echocardiography could be a promising method to overcome the limitations of the PISA method, especially in cases of MR with elliptic orifice shapes.
AB - Effective regurgitant orifice area is a useful index of the severity of mitral regurgitation (MR). The calculation of regurgitant orifice area using the proximal isovelocity surface area (PISA) method has some technical limitations. Three-dimensional reconstruction of the MR jet was performed using the Live 3D system on a Sonos 7500 to measure regurgitant orifice area directly in 109 cases of MR. Regurgitant orifice area was also measured by quantitative 2-dimensional echocardiography and by the PISA method. To analyze the shape of the regurgitant orifice, the ratio of the long axis to the short axis of the orifice (the L/S ratio) was calculated. Regurgitant orifice area on 3-dimensional echocardiography showed an almost identical correlation with that obtained by quantitative echocardiography (r = 0.91, p <0.0001, slope = 0.97) regardless of the L/S ratio. It was also significantly correlated with orifice area obtained using the PISA method (r = 0.93, p <0.0001). However, orifice area on 3-dimensional echocardiography was significantly larger than that obtained using the PISA method in the whole study group and in the 62 cases of MR with L/S ratios >1.5, whereas the correlation was almost identical in cases of MR with L/S ratios ≤1.5. Orifice area obtained using the PISA method also underestimated that obtained by quantitative echocardiography in cases of MR with L/S ratios >1.5. Three-dimensional echocardiography provided robust values independent of the eccentricity of the MR jet or of cardiac rhythm. In conclusion, the direct measurement of the regurgitant orifice area of MR with 3-dimensional Doppler echocardiography could be a promising method to overcome the limitations of the PISA method, especially in cases of MR with elliptic orifice shapes.
UR - http://www.scopus.com/inward/record.url?scp=33646691308&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33646691308&partnerID=8YFLogxK
U2 - 10.1016/j.amjcard.2005.12.065
DO - 10.1016/j.amjcard.2005.12.065
M3 - Article
C2 - 16728228
AN - SCOPUS:33646691308
VL - 97
SP - 1630
EP - 1637
JO - American Journal of Cardiology
JF - American Journal of Cardiology
SN - 0002-9149
IS - 11
ER -