Comparing the osteogenic potential and bone regeneration capacities of dedifferentiated fat cells and adipose-derived stem cells in vitro and in vivo: Application of DFAT cells isolated by a mesh method

Kiyofumi Takabatake, Masakazu Matsubara, Eiki Yamachika, Yuki Fujita, Yuki Arimura, Kazuki Nakatsuji, Keisuke Nakano, Histoshi Nagatsuka, Seiji Iida

Research output: Contribution to journalArticlepeer-review

Abstract

Background: We investigated and compared the osteogenic potential and bone regeneration capacities of dedifferentiated fat cells (DFAT cells) and adipose-derived stem cells (ASCs). Method: We isolated DFAT cells and ASCs from GFP mice. DFAT cells were established by a new culture method using a mesh culture instead of a ceiling culture. The isolated DFAT cells and ASCs were incubated in osteogenic medium, then alizarin red staining, alkaline phosphatase (ALP) assays, and RT-PCR (for RUNX2, osteopontin, DLX5, osterix, and osteocalcin) were performed to evaluate the osteoblastic differentiation ability of both cell types in vitro. In vivo, the DFAT cells and ASCs were incubated in osteogenic medium for four weeks and seeded on collagen composite scaffolds, then implanted subcutaneously into the backs of mice. We then performed hematoxylin and eosin staining and immunostaining for GFP and osteocalcin. Results: The alizarin red-stained areas in DFAT cells showed weak calcification ability at two weeks, but high calcification ability at three weeks, similar to ASCs. The ALP levels of ASCs increased earlier than in DFAT cells and showed a significant difference (p < 0.05) at 6 and 9 days. The ALP levels of DFATs were higher than those of ASCs after 12 days. The expression levels of osteoblast marker genes (osterix and osteocalcin) of DFAT cells and ASCs were higher after osteogenic differentiation culture. Conclusion: DFAT cells are easily isolated from a small amount of adipose tissue and are readily expanded with high purity; thus, DFAT cells are applicable to many tissue-engineering strategies and cell-based therapies.

Original languageEnglish
Article number12392
JournalInternational journal of molecular sciences
Volume22
Issue number22
DOIs
Publication statusPublished - Nov 1 2021

Keywords

  • Adipose-derived stem cells (ASCs)
  • Bone regenera-tion
  • Dedifferentiated fat cells (DFAT cells)
  • Mesh culture method

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Comparing the osteogenic potential and bone regeneration capacities of dedifferentiated fat cells and adipose-derived stem cells in vitro and in vivo: Application of DFAT cells isolated by a mesh method'. Together they form a unique fingerprint.

Cite this