Comparative analyses of transgene delivery and expression in tumors inoculated with a replication-conditional or -defective viral vector

T. Ichikawa, E. A. Chiocca

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

Viral vectors for cancer can be classified into those that do not replicate (replication-defective vectors) and those that selectively replicate in neoplastic cells (replication-conditional or oncolytic vectors). Both of these can deliver anticancer cDNAs for therapeutic purposes. Opposite hypotheses can be made regarding the advantages of each vector type with regard to anatomic transgene expression. For the former vector, because cDNA delivery occurs in neoplastic cells that have the ability to migrate into the tumor mass, relatively extensive anatomic and temporal expression of anticancer functions may occur. For the latter vector, active viral replication may permit anatomically and temporally extensive delivery of the foreign cDNA into the tumor mass. Herein, we performed a simple comparative analysis to test which of these hypotheses is valid. Direct inoculation of s.c. tumors with a replication-conditional or a replication-defective viral vector, each of which expressed lacZ cDNA, was performed. Tumors were excised and analyzed for anatomic delivery of β-galactosidase and for neoplastic viral titers. We find that lacZ cDNA expression is observed in approximately 40% of the tumor area 3, 7, and 14 days after injection with the replication-conditional vector, whereas approximately 10% of the tumor area expresses the transgene 3 days after injection with the replication-defective vector, with a rapid decline in expression thereafter. Titers of the replication-conditional virus remain stable within injected tumors for the 14 days of the assay (approximately 1:1,000 of the initial injection dose), whereas titers of the replication-defective vector decrease rapidly after injection (to a value of 1:100,000 of the initial injection dose). Taken in conjunction, these studies show that transgene delivery and expression in tumors last longer and are found throughout an anatomically more extensive area after injection with replication-conditional gene therapy vectors than after injection with replication-defective gene therapy vectors.

Original languageEnglish
Pages (from-to)5336-5339
Number of pages4
JournalCancer Research
Volume61
Issue number14
Publication statusPublished - Jul 15 2001
Externally publishedYes

Fingerprint

Transgenes
Injections
Complementary DNA
Neoplasms
Genetic Therapy
Galactosidases
Virus Replication

ASJC Scopus subject areas

  • Cancer Research
  • Oncology

Cite this

Comparative analyses of transgene delivery and expression in tumors inoculated with a replication-conditional or -defective viral vector. / Ichikawa, T.; Chiocca, E. A.

In: Cancer Research, Vol. 61, No. 14, 15.07.2001, p. 5336-5339.

Research output: Contribution to journalArticle

@article{cabf3f9e8b3a45e08cb83681537a495f,
title = "Comparative analyses of transgene delivery and expression in tumors inoculated with a replication-conditional or -defective viral vector",
abstract = "Viral vectors for cancer can be classified into those that do not replicate (replication-defective vectors) and those that selectively replicate in neoplastic cells (replication-conditional or oncolytic vectors). Both of these can deliver anticancer cDNAs for therapeutic purposes. Opposite hypotheses can be made regarding the advantages of each vector type with regard to anatomic transgene expression. For the former vector, because cDNA delivery occurs in neoplastic cells that have the ability to migrate into the tumor mass, relatively extensive anatomic and temporal expression of anticancer functions may occur. For the latter vector, active viral replication may permit anatomically and temporally extensive delivery of the foreign cDNA into the tumor mass. Herein, we performed a simple comparative analysis to test which of these hypotheses is valid. Direct inoculation of s.c. tumors with a replication-conditional or a replication-defective viral vector, each of which expressed lacZ cDNA, was performed. Tumors were excised and analyzed for anatomic delivery of β-galactosidase and for neoplastic viral titers. We find that lacZ cDNA expression is observed in approximately 40{\%} of the tumor area 3, 7, and 14 days after injection with the replication-conditional vector, whereas approximately 10{\%} of the tumor area expresses the transgene 3 days after injection with the replication-defective vector, with a rapid decline in expression thereafter. Titers of the replication-conditional virus remain stable within injected tumors for the 14 days of the assay (approximately 1:1,000 of the initial injection dose), whereas titers of the replication-defective vector decrease rapidly after injection (to a value of 1:100,000 of the initial injection dose). Taken in conjunction, these studies show that transgene delivery and expression in tumors last longer and are found throughout an anatomically more extensive area after injection with replication-conditional gene therapy vectors than after injection with replication-defective gene therapy vectors.",
author = "T. Ichikawa and Chiocca, {E. A.}",
year = "2001",
month = "7",
day = "15",
language = "English",
volume = "61",
pages = "5336--5339",
journal = "Journal of Cancer Research",
issn = "0008-5472",
publisher = "American Association for Cancer Research Inc.",
number = "14",

}

TY - JOUR

T1 - Comparative analyses of transgene delivery and expression in tumors inoculated with a replication-conditional or -defective viral vector

AU - Ichikawa, T.

AU - Chiocca, E. A.

PY - 2001/7/15

Y1 - 2001/7/15

N2 - Viral vectors for cancer can be classified into those that do not replicate (replication-defective vectors) and those that selectively replicate in neoplastic cells (replication-conditional or oncolytic vectors). Both of these can deliver anticancer cDNAs for therapeutic purposes. Opposite hypotheses can be made regarding the advantages of each vector type with regard to anatomic transgene expression. For the former vector, because cDNA delivery occurs in neoplastic cells that have the ability to migrate into the tumor mass, relatively extensive anatomic and temporal expression of anticancer functions may occur. For the latter vector, active viral replication may permit anatomically and temporally extensive delivery of the foreign cDNA into the tumor mass. Herein, we performed a simple comparative analysis to test which of these hypotheses is valid. Direct inoculation of s.c. tumors with a replication-conditional or a replication-defective viral vector, each of which expressed lacZ cDNA, was performed. Tumors were excised and analyzed for anatomic delivery of β-galactosidase and for neoplastic viral titers. We find that lacZ cDNA expression is observed in approximately 40% of the tumor area 3, 7, and 14 days after injection with the replication-conditional vector, whereas approximately 10% of the tumor area expresses the transgene 3 days after injection with the replication-defective vector, with a rapid decline in expression thereafter. Titers of the replication-conditional virus remain stable within injected tumors for the 14 days of the assay (approximately 1:1,000 of the initial injection dose), whereas titers of the replication-defective vector decrease rapidly after injection (to a value of 1:100,000 of the initial injection dose). Taken in conjunction, these studies show that transgene delivery and expression in tumors last longer and are found throughout an anatomically more extensive area after injection with replication-conditional gene therapy vectors than after injection with replication-defective gene therapy vectors.

AB - Viral vectors for cancer can be classified into those that do not replicate (replication-defective vectors) and those that selectively replicate in neoplastic cells (replication-conditional or oncolytic vectors). Both of these can deliver anticancer cDNAs for therapeutic purposes. Opposite hypotheses can be made regarding the advantages of each vector type with regard to anatomic transgene expression. For the former vector, because cDNA delivery occurs in neoplastic cells that have the ability to migrate into the tumor mass, relatively extensive anatomic and temporal expression of anticancer functions may occur. For the latter vector, active viral replication may permit anatomically and temporally extensive delivery of the foreign cDNA into the tumor mass. Herein, we performed a simple comparative analysis to test which of these hypotheses is valid. Direct inoculation of s.c. tumors with a replication-conditional or a replication-defective viral vector, each of which expressed lacZ cDNA, was performed. Tumors were excised and analyzed for anatomic delivery of β-galactosidase and for neoplastic viral titers. We find that lacZ cDNA expression is observed in approximately 40% of the tumor area 3, 7, and 14 days after injection with the replication-conditional vector, whereas approximately 10% of the tumor area expresses the transgene 3 days after injection with the replication-defective vector, with a rapid decline in expression thereafter. Titers of the replication-conditional virus remain stable within injected tumors for the 14 days of the assay (approximately 1:1,000 of the initial injection dose), whereas titers of the replication-defective vector decrease rapidly after injection (to a value of 1:100,000 of the initial injection dose). Taken in conjunction, these studies show that transgene delivery and expression in tumors last longer and are found throughout an anatomically more extensive area after injection with replication-conditional gene therapy vectors than after injection with replication-defective gene therapy vectors.

UR - http://www.scopus.com/inward/record.url?scp=0035878847&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035878847&partnerID=8YFLogxK

M3 - Article

C2 - 11454670

AN - SCOPUS:0035878847

VL - 61

SP - 5336

EP - 5339

JO - Journal of Cancer Research

JF - Journal of Cancer Research

SN - 0008-5472

IS - 14

ER -