Combined Nyquist and compressed sampling method for radio wave data compression of a heterogeneous network system

Doohwan Lee, Takayuki Yamada, Hiroyuki Shiba, Yo Yamaguchi, Kazuhiro Uehara

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

To satisfy the requirement of a unified platform which can flexibly deal with various wireless radio systems, we proposed and implemented a heterogeneous network system composed of distributed flexible access points and a protocol-free signal processing unit. Distributed flexible access points are remote RF devices which perform the reception of multiple types of radio wave data and transfer the received data to the protocol-free signal processing unit through wired access network. The protocol-free signal processing unit performs multiple types of signal analysis by software. To realize a highly flexible and efficient radio wave data reception and transfer, we employ the recently developed compressed sensing technology. Moreover, we propose a combined Nyquist and compressed sampling method for the decoding signals to be sampled at the Nyquist rate and for the sensing signals to be sampled at the compressed rate. For this purpose, the decoding signals and the sensing signals are converted into the intermediate band frequency (IF) and mixed. In the IF band, the decoding signals are set at lower center frequencies than those of the sensing signals. The down converted signals are sampled at the rate of four times of the whole bandwidth of the decoding signals plus two times of the whole bandwidth of the sensing signals. The purpose of above setting is to simultaneously conduct Nyquist rate and compressed rate sampling in a single ADC. Then, all of odd (or even) samples are preserved and some of even (or odd) samples are randomly discarded. This method reduces the data transfer burden in dealing with the sensing signals while guaranteeing the realization of Nyquist-rate decoding performance. Simulation and experiment results validate the efficiency of the proposed method.

Original languageEnglish
Pages (from-to)3238-3247
Number of pages10
JournalIEICE Transactions on Communications
VolumeE93-B
Issue number12
DOIs
Publication statusPublished - Dec 2010
Externally publishedYes

Keywords

  • Cognitive radio
  • Compressed sensing
  • Compressive sampling
  • Heterogeneous network system
  • L1-minimization

ASJC Scopus subject areas

  • Software
  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Combined Nyquist and compressed sampling method for radio wave data compression of a heterogeneous network system'. Together they form a unique fingerprint.

  • Cite this