Abstract
Let G be a finite group and A(G) the Burnside ring of G. The family of rings A(H), where H ranges over the set of all proper subgroups of G, yields the inverse limit L(G) and a canonical homomorphism from A(G) to L(G) which is called the restriction map. Let Q(G) be the cokernel of this homomorphism. It is known that Q(G) is a finite abelian group and is isomorphic to the cartesian product of Q(G/N(p)), where p runs over the set of primes dividing the order of G and N(p) stands for the smallest normal subgroup of G such that the order of G/N(p) is a power of p. Therefore, it is important to investigate Q(G) for G of prime power order. In this paper we develop a way to compute Q(G) for cartesian products G of two cyclic p-groups.
Original language | English |
---|---|
Pages (from-to) | 95-105 |
Number of pages | 11 |
Journal | Kyushu Journal of Mathematics |
Volume | 72 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2018 |
Keywords
- Burnside ring
- Finite group
- Inverse limit
ASJC Scopus subject areas
- Mathematics(all)