Coherent diffractive imaging of microtubules using an X-ray laser

Gisela Brändén, Greger Hammarin, Rajiv Harimoorthy, Alexander Johansson, David Arnlund, Erik Malmerberg, Anton Barty, Stefan Tångefjord, Peter Berntsen, Daniel P. DePonte, Carolin Seuring, Thomas A. White, Francesco Stellato, Richard Bean, Kenneth R. Beyerlein, Leonard M.G. Chavas, Holger Fleckenstein, Cornelius Gati, Umesh Ghoshdastider, Lars GumprechtDominik Oberthür, David Popp, Marvin Seibert, Thomas Tilp, Marc Messerschmidt, Garth J. Williams, N. Duane Loh, Henry N. Chapman, Peter Zwart, Mengning Liang, Sébastien Boutet, Robert C. Robinson, Richard Neutze

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

X-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas single particle coherent X-ray imaging requires development to extend the resolution beyond a few tens of nanometers. Here we describe an intermediate approach: the XFEL imaging of biological assemblies with helical symmetry. We collected X-ray scattering images from samples of microtubules injected across an XFEL beam using a liquid microjet, sorted these images into class averages, merged these data into a diffraction pattern extending to 2 nm resolution, and reconstructed these data into a projection image of the microtubule. Details such as the 4 nm tubulin monomer became visible in this reconstruction. These results illustrate the potential of single-molecule X-ray imaging of biological assembles with helical symmetry at room temperature.

Original languageEnglish
Article number2589
JournalNature communications
Volume10
Issue number1
DOIs
Publication statusPublished - Dec 1 2019

Fingerprint

X ray lasers
Free electron lasers
Microtubules
Lasers
X-Rays
Imaging techniques
free electron lasers
lasers
X rays
x rays
Crystallography
Electrons
Tubulin
Synchrotron radiation
X ray scattering
Diffraction patterns
Laser beams
Monomers
Single crystals
Synchrotrons

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Cite this

Brändén, G., Hammarin, G., Harimoorthy, R., Johansson, A., Arnlund, D., Malmerberg, E., ... Neutze, R. (2019). Coherent diffractive imaging of microtubules using an X-ray laser. Nature communications, 10(1), [2589]. https://doi.org/10.1038/s41467-019-10448-x

Coherent diffractive imaging of microtubules using an X-ray laser. / Brändén, Gisela; Hammarin, Greger; Harimoorthy, Rajiv; Johansson, Alexander; Arnlund, David; Malmerberg, Erik; Barty, Anton; Tångefjord, Stefan; Berntsen, Peter; DePonte, Daniel P.; Seuring, Carolin; White, Thomas A.; Stellato, Francesco; Bean, Richard; Beyerlein, Kenneth R.; Chavas, Leonard M.G.; Fleckenstein, Holger; Gati, Cornelius; Ghoshdastider, Umesh; Gumprecht, Lars; Oberthür, Dominik; Popp, David; Seibert, Marvin; Tilp, Thomas; Messerschmidt, Marc; Williams, Garth J.; Loh, N. Duane; Chapman, Henry N.; Zwart, Peter; Liang, Mengning; Boutet, Sébastien; Robinson, Robert C.; Neutze, Richard.

In: Nature communications, Vol. 10, No. 1, 2589, 01.12.2019.

Research output: Contribution to journalArticle

Brändén, G, Hammarin, G, Harimoorthy, R, Johansson, A, Arnlund, D, Malmerberg, E, Barty, A, Tångefjord, S, Berntsen, P, DePonte, DP, Seuring, C, White, TA, Stellato, F, Bean, R, Beyerlein, KR, Chavas, LMG, Fleckenstein, H, Gati, C, Ghoshdastider, U, Gumprecht, L, Oberthür, D, Popp, D, Seibert, M, Tilp, T, Messerschmidt, M, Williams, GJ, Loh, ND, Chapman, HN, Zwart, P, Liang, M, Boutet, S, Robinson, RC & Neutze, R 2019, 'Coherent diffractive imaging of microtubules using an X-ray laser', Nature communications, vol. 10, no. 1, 2589. https://doi.org/10.1038/s41467-019-10448-x
Brändén G, Hammarin G, Harimoorthy R, Johansson A, Arnlund D, Malmerberg E et al. Coherent diffractive imaging of microtubules using an X-ray laser. Nature communications. 2019 Dec 1;10(1). 2589. https://doi.org/10.1038/s41467-019-10448-x
Brändén, Gisela ; Hammarin, Greger ; Harimoorthy, Rajiv ; Johansson, Alexander ; Arnlund, David ; Malmerberg, Erik ; Barty, Anton ; Tångefjord, Stefan ; Berntsen, Peter ; DePonte, Daniel P. ; Seuring, Carolin ; White, Thomas A. ; Stellato, Francesco ; Bean, Richard ; Beyerlein, Kenneth R. ; Chavas, Leonard M.G. ; Fleckenstein, Holger ; Gati, Cornelius ; Ghoshdastider, Umesh ; Gumprecht, Lars ; Oberthür, Dominik ; Popp, David ; Seibert, Marvin ; Tilp, Thomas ; Messerschmidt, Marc ; Williams, Garth J. ; Loh, N. Duane ; Chapman, Henry N. ; Zwart, Peter ; Liang, Mengning ; Boutet, Sébastien ; Robinson, Robert C. ; Neutze, Richard. / Coherent diffractive imaging of microtubules using an X-ray laser. In: Nature communications. 2019 ; Vol. 10, No. 1.
@article{e25c1e2d87eb46dcabbd7f1b287a540d,
title = "Coherent diffractive imaging of microtubules using an X-ray laser",
abstract = "X-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas single particle coherent X-ray imaging requires development to extend the resolution beyond a few tens of nanometers. Here we describe an intermediate approach: the XFEL imaging of biological assemblies with helical symmetry. We collected X-ray scattering images from samples of microtubules injected across an XFEL beam using a liquid microjet, sorted these images into class averages, merged these data into a diffraction pattern extending to 2 nm resolution, and reconstructed these data into a projection image of the microtubule. Details such as the 4 nm tubulin monomer became visible in this reconstruction. These results illustrate the potential of single-molecule X-ray imaging of biological assembles with helical symmetry at room temperature.",
author = "Gisela Br{\"a}nd{\'e}n and Greger Hammarin and Rajiv Harimoorthy and Alexander Johansson and David Arnlund and Erik Malmerberg and Anton Barty and Stefan T{\aa}ngefjord and Peter Berntsen and DePonte, {Daniel P.} and Carolin Seuring and White, {Thomas A.} and Francesco Stellato and Richard Bean and Beyerlein, {Kenneth R.} and Chavas, {Leonard M.G.} and Holger Fleckenstein and Cornelius Gati and Umesh Ghoshdastider and Lars Gumprecht and Dominik Oberth{\"u}r and David Popp and Marvin Seibert and Thomas Tilp and Marc Messerschmidt and Williams, {Garth J.} and Loh, {N. Duane} and Chapman, {Henry N.} and Peter Zwart and Mengning Liang and S{\'e}bastien Boutet and Robinson, {Robert C.} and Richard Neutze",
year = "2019",
month = "12",
day = "1",
doi = "10.1038/s41467-019-10448-x",
language = "English",
volume = "10",
journal = "Nature Communications",
issn = "2041-1723",
publisher = "Nature Publishing Group",
number = "1",

}

TY - JOUR

T1 - Coherent diffractive imaging of microtubules using an X-ray laser

AU - Brändén, Gisela

AU - Hammarin, Greger

AU - Harimoorthy, Rajiv

AU - Johansson, Alexander

AU - Arnlund, David

AU - Malmerberg, Erik

AU - Barty, Anton

AU - Tångefjord, Stefan

AU - Berntsen, Peter

AU - DePonte, Daniel P.

AU - Seuring, Carolin

AU - White, Thomas A.

AU - Stellato, Francesco

AU - Bean, Richard

AU - Beyerlein, Kenneth R.

AU - Chavas, Leonard M.G.

AU - Fleckenstein, Holger

AU - Gati, Cornelius

AU - Ghoshdastider, Umesh

AU - Gumprecht, Lars

AU - Oberthür, Dominik

AU - Popp, David

AU - Seibert, Marvin

AU - Tilp, Thomas

AU - Messerschmidt, Marc

AU - Williams, Garth J.

AU - Loh, N. Duane

AU - Chapman, Henry N.

AU - Zwart, Peter

AU - Liang, Mengning

AU - Boutet, Sébastien

AU - Robinson, Robert C.

AU - Neutze, Richard

PY - 2019/12/1

Y1 - 2019/12/1

N2 - X-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas single particle coherent X-ray imaging requires development to extend the resolution beyond a few tens of nanometers. Here we describe an intermediate approach: the XFEL imaging of biological assemblies with helical symmetry. We collected X-ray scattering images from samples of microtubules injected across an XFEL beam using a liquid microjet, sorted these images into class averages, merged these data into a diffraction pattern extending to 2 nm resolution, and reconstructed these data into a projection image of the microtubule. Details such as the 4 nm tubulin monomer became visible in this reconstruction. These results illustrate the potential of single-molecule X-ray imaging of biological assembles with helical symmetry at room temperature.

AB - X-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas single particle coherent X-ray imaging requires development to extend the resolution beyond a few tens of nanometers. Here we describe an intermediate approach: the XFEL imaging of biological assemblies with helical symmetry. We collected X-ray scattering images from samples of microtubules injected across an XFEL beam using a liquid microjet, sorted these images into class averages, merged these data into a diffraction pattern extending to 2 nm resolution, and reconstructed these data into a projection image of the microtubule. Details such as the 4 nm tubulin monomer became visible in this reconstruction. These results illustrate the potential of single-molecule X-ray imaging of biological assembles with helical symmetry at room temperature.

UR - http://www.scopus.com/inward/record.url?scp=85067364892&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85067364892&partnerID=8YFLogxK

U2 - 10.1038/s41467-019-10448-x

DO - 10.1038/s41467-019-10448-x

M3 - Article

C2 - 31197138

AN - SCOPUS:85067364892

VL - 10

JO - Nature Communications

JF - Nature Communications

SN - 2041-1723

IS - 1

M1 - 2589

ER -