Cloning and characterization of the region III flagellar operons of the four Shigella subgroups

Genetic defects that cause loss of flagella of Shigella boydii and Shigella sonnei

Abu Amar M Al Mamun, Akira Tominaga, Masatoshi Enomoto

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

To detect genetic defects that might have caused loss of flagella in Shigella boydii and Shigella sonnei, the region III flagellar (fli) operons were cloned from certain strains and analyzed with reference to the restriction maps and genetic maps of Escherichia coli fli operons. S. boydii NCTC9733 (strain C5 in this paper) had the 988-bp internal deletion in the fliF gene that encodes a large substructural protein of the basal body. Two strains (C1 and C8) had deletions of the entire fliF operon, and the remaining three (C3, C4, and C9) differed in the size of the restriction fragments carrying the fliF and fliL operons. Loss of flagella in S. boydii appears to originate in some defect in the fliF operon. S. sonnei IID969 lacked the fliD gene and, in place of it, carried two IS600 elements as inverted repeats. Genes downstream from fliD were not detected in the cloned fragment despite its large size but did appear elsewhere in the chromosome. The fliD gene encodes a cap protein of the flagellar filament, and its deletion results in overexpression of class 3 operons by the increased amount of FliA (σ(F)) caused by the excess export of the anti-sigma factor FlgM. Three other strains also had the fliD deletion, and two of them had another deletion in the fliF-fliG-fliH region. The fliD deletion might be the primary cause of loss of flagella in S. sonnei. The lack of FliF or FliD in each subgroup is discussed in connection with the maintenance of virulence and bacterial growth. We also discuss the process of loss of flagella in relation to transposition of IS elements and alterations of the noncoding region, which were found to be common to at least three subgroups.

Original languageEnglish
Pages (from-to)4493-4500
Number of pages8
JournalJournal of Bacteriology
Volume179
Issue number14
Publication statusPublished - Jul 1997

Fingerprint

Shigella boydii
Shigella sonnei
Shigella
Flagella
Operon
Organism Cloning
Genes
Basal Bodies
Sigma Factor
DNA Transposable Elements
Virulence
Proteins
Chromosomes
Maintenance
Escherichia coli
Growth

ASJC Scopus subject areas

  • Applied Microbiology and Biotechnology
  • Immunology

Cite this

@article{5b07ca82ba2445ca80d7921765f5a44e,
title = "Cloning and characterization of the region III flagellar operons of the four Shigella subgroups: Genetic defects that cause loss of flagella of Shigella boydii and Shigella sonnei",
abstract = "To detect genetic defects that might have caused loss of flagella in Shigella boydii and Shigella sonnei, the region III flagellar (fli) operons were cloned from certain strains and analyzed with reference to the restriction maps and genetic maps of Escherichia coli fli operons. S. boydii NCTC9733 (strain C5 in this paper) had the 988-bp internal deletion in the fliF gene that encodes a large substructural protein of the basal body. Two strains (C1 and C8) had deletions of the entire fliF operon, and the remaining three (C3, C4, and C9) differed in the size of the restriction fragments carrying the fliF and fliL operons. Loss of flagella in S. boydii appears to originate in some defect in the fliF operon. S. sonnei IID969 lacked the fliD gene and, in place of it, carried two IS600 elements as inverted repeats. Genes downstream from fliD were not detected in the cloned fragment despite its large size but did appear elsewhere in the chromosome. The fliD gene encodes a cap protein of the flagellar filament, and its deletion results in overexpression of class 3 operons by the increased amount of FliA (σ(F)) caused by the excess export of the anti-sigma factor FlgM. Three other strains also had the fliD deletion, and two of them had another deletion in the fliF-fliG-fliH region. The fliD deletion might be the primary cause of loss of flagella in S. sonnei. The lack of FliF or FliD in each subgroup is discussed in connection with the maintenance of virulence and bacterial growth. We also discuss the process of loss of flagella in relation to transposition of IS elements and alterations of the noncoding region, which were found to be common to at least three subgroups.",
author = "{Al Mamun}, {Abu Amar M} and Akira Tominaga and Masatoshi Enomoto",
year = "1997",
month = "7",
language = "English",
volume = "179",
pages = "4493--4500",
journal = "Journal of Bacteriology",
issn = "0021-9193",
publisher = "American Society for Microbiology",
number = "14",

}

TY - JOUR

T1 - Cloning and characterization of the region III flagellar operons of the four Shigella subgroups

T2 - Genetic defects that cause loss of flagella of Shigella boydii and Shigella sonnei

AU - Al Mamun, Abu Amar M

AU - Tominaga, Akira

AU - Enomoto, Masatoshi

PY - 1997/7

Y1 - 1997/7

N2 - To detect genetic defects that might have caused loss of flagella in Shigella boydii and Shigella sonnei, the region III flagellar (fli) operons were cloned from certain strains and analyzed with reference to the restriction maps and genetic maps of Escherichia coli fli operons. S. boydii NCTC9733 (strain C5 in this paper) had the 988-bp internal deletion in the fliF gene that encodes a large substructural protein of the basal body. Two strains (C1 and C8) had deletions of the entire fliF operon, and the remaining three (C3, C4, and C9) differed in the size of the restriction fragments carrying the fliF and fliL operons. Loss of flagella in S. boydii appears to originate in some defect in the fliF operon. S. sonnei IID969 lacked the fliD gene and, in place of it, carried two IS600 elements as inverted repeats. Genes downstream from fliD were not detected in the cloned fragment despite its large size but did appear elsewhere in the chromosome. The fliD gene encodes a cap protein of the flagellar filament, and its deletion results in overexpression of class 3 operons by the increased amount of FliA (σ(F)) caused by the excess export of the anti-sigma factor FlgM. Three other strains also had the fliD deletion, and two of them had another deletion in the fliF-fliG-fliH region. The fliD deletion might be the primary cause of loss of flagella in S. sonnei. The lack of FliF or FliD in each subgroup is discussed in connection with the maintenance of virulence and bacterial growth. We also discuss the process of loss of flagella in relation to transposition of IS elements and alterations of the noncoding region, which were found to be common to at least three subgroups.

AB - To detect genetic defects that might have caused loss of flagella in Shigella boydii and Shigella sonnei, the region III flagellar (fli) operons were cloned from certain strains and analyzed with reference to the restriction maps and genetic maps of Escherichia coli fli operons. S. boydii NCTC9733 (strain C5 in this paper) had the 988-bp internal deletion in the fliF gene that encodes a large substructural protein of the basal body. Two strains (C1 and C8) had deletions of the entire fliF operon, and the remaining three (C3, C4, and C9) differed in the size of the restriction fragments carrying the fliF and fliL operons. Loss of flagella in S. boydii appears to originate in some defect in the fliF operon. S. sonnei IID969 lacked the fliD gene and, in place of it, carried two IS600 elements as inverted repeats. Genes downstream from fliD were not detected in the cloned fragment despite its large size but did appear elsewhere in the chromosome. The fliD gene encodes a cap protein of the flagellar filament, and its deletion results in overexpression of class 3 operons by the increased amount of FliA (σ(F)) caused by the excess export of the anti-sigma factor FlgM. Three other strains also had the fliD deletion, and two of them had another deletion in the fliF-fliG-fliH region. The fliD deletion might be the primary cause of loss of flagella in S. sonnei. The lack of FliF or FliD in each subgroup is discussed in connection with the maintenance of virulence and bacterial growth. We also discuss the process of loss of flagella in relation to transposition of IS elements and alterations of the noncoding region, which were found to be common to at least three subgroups.

UR - http://www.scopus.com/inward/record.url?scp=0030756210&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030756210&partnerID=8YFLogxK

M3 - Article

VL - 179

SP - 4493

EP - 4500

JO - Journal of Bacteriology

JF - Journal of Bacteriology

SN - 0021-9193

IS - 14

ER -