Cilostazol Attenuates AngII-Induced Cardiac Fibrosis in apoE Deficient Mice

Yoshiko Hada, Haruhito A. Uchida, Ryoko Umebayashi, Masashi Yoshida, Jun Wada

Research output: Contribution to journalArticlepeer-review


Cardiac fibrosis is characterized by the net accumulation of extracellular matrix in the myocardium and is an integral component of most pathological cardiac conditions. Cilostazol, a selective inhibitor of phosphodiesterase type III with anti-platelet, anti-mitogenic, and vasodilating properties, is widely used to treat the ischemic symptoms of peripheral vascular disease. Here, we investigated whether cilostazol has a protective effect against Angiotensin II (AngII)-induced cardiac fibrosis. Male apolipoprotein E-deficient mice were fed either a normal diet or a diet containing cilostazol (0.1% wt/wt). After 1 week of diet consumption, the mice were infused with saline or AngII (1000 ng kg−1 min−1) for 28 days. AngII infusion increased heart/body weight ratio (p < 0.05), perivascular fibrosis (p < 0.05), and interstitial cardiac fibrosis (p < 0.0001), but were significantly attenuated by cilostazol treatment (p < 0.05, respectively). Cilostazol also reduced AngII-induced increases in fibrotic and inflammatory gene expression (p < 0.05, respectively). Furthermore, cilostazol attenuated both protein and mRNA abundance of osteopontin induced by AngII in vivo. In cultured human cardiac myocytes, cilostazol reduced mRNA expression of AngII-induced osteopontin in dose-dependent manner. This reduction was mimicked by forskolin treatment but was cancelled by co-treatment of H-89. Cilostazol attenuates AngII-induced cardiac fibrosis in mice through activation of the cAMP–PKA pathway.

Original languageEnglish
Article number9065
JournalInternational journal of molecular sciences
Issue number16
Publication statusPublished - Aug 2022


  • angiotensin II
  • cAMP-PKA
  • cilostazol
  • fibrosis
  • osteopontin

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry


Dive into the research topics of 'Cilostazol Attenuates AngII-Induced Cardiac Fibrosis in apoE Deficient Mice'. Together they form a unique fingerprint.

Cite this