Characterization of Pieces of Paper That Form Reagent Containers for Use as Portable Analytical Devices

Supatana Buking, Yusuke Suedomi, Duangjai Nacapricha, Takashi Kaneta

Research output: Contribution to journalArticle

Abstract

Reagent-deposited pieces of paper were characterized by the use of a compact conductometer, a compact pH sensor, and a conventional spectrophotometer to assess their suitability for use as reagent containers. The pieces of paper were fabricated by wax printing to form a limited hydrophilic area to which a consistent volume of an aqueous reagent could be added. The pieces of paper without the reagent increased the conductivity of water gradually because of the release of sodium salts, whereas pH of NaOH decreased because of the acidity of the functional groups in the paper. Three reagents, sulfamic acid as an acid, Na2CO3 as a base, and BaCl2 as a metal salt, were deposited on the pieces of paper to evaluate their ability to release from the pieces of paper. Sulfamic acid and Na2CO3 were released in quantities of 58 and 73% into water after 420 s, whereas 100% of BaCl2 was released after 480 s. The conductometric titrations of NaOH, HCl, and Na2SO4, and the spectrophotometry of Fe2+ were examined using the pieces of paper that contained sulfamic acid, Na2CO3, BaCl2, and 1,10-phenanthroline. Titrations using the pieces of paper suggested that the reagents were quantitatively released into the titrant, which resulted in a linear relationship between the endpoints and the equivalent points. In 120 s of soaking time, 60-70% of the reagents were released. The spectrophotometric measurements of Fe2+ indicated that when an excess amount of the reagents was deposited onto the pieces of paper, they nonetheless sufficiently fulfilled the role of a reagent container.

Original languageEnglish
Pages (from-to)15249-15254
Number of pages6
JournalACS Omega
Volume4
Issue number12
DOIs
Publication statusPublished - Sep 17 2019

Fingerprint

Sulfamic acid
Containers
Titration
Salts
pH sensors
Spectrophotometers
Spectrophotometry
Waxes
Acidity
Functional groups
Printing
Water
Sodium
Acids
Metals

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)

Cite this

Characterization of Pieces of Paper That Form Reagent Containers for Use as Portable Analytical Devices. / Buking, Supatana; Suedomi, Yusuke; Nacapricha, Duangjai; Kaneta, Takashi.

In: ACS Omega, Vol. 4, No. 12, 17.09.2019, p. 15249-15254.

Research output: Contribution to journalArticle

Buking, Supatana ; Suedomi, Yusuke ; Nacapricha, Duangjai ; Kaneta, Takashi. / Characterization of Pieces of Paper That Form Reagent Containers for Use as Portable Analytical Devices. In: ACS Omega. 2019 ; Vol. 4, No. 12. pp. 15249-15254.
@article{f46cf98029bc40c28e0e7ce49d2a5740,
title = "Characterization of Pieces of Paper That Form Reagent Containers for Use as Portable Analytical Devices",
abstract = "Reagent-deposited pieces of paper were characterized by the use of a compact conductometer, a compact pH sensor, and a conventional spectrophotometer to assess their suitability for use as reagent containers. The pieces of paper were fabricated by wax printing to form a limited hydrophilic area to which a consistent volume of an aqueous reagent could be added. The pieces of paper without the reagent increased the conductivity of water gradually because of the release of sodium salts, whereas pH of NaOH decreased because of the acidity of the functional groups in the paper. Three reagents, sulfamic acid as an acid, Na2CO3 as a base, and BaCl2 as a metal salt, were deposited on the pieces of paper to evaluate their ability to release from the pieces of paper. Sulfamic acid and Na2CO3 were released in quantities of 58 and 73{\%} into water after 420 s, whereas 100{\%} of BaCl2 was released after 480 s. The conductometric titrations of NaOH, HCl, and Na2SO4, and the spectrophotometry of Fe2+ were examined using the pieces of paper that contained sulfamic acid, Na2CO3, BaCl2, and 1,10-phenanthroline. Titrations using the pieces of paper suggested that the reagents were quantitatively released into the titrant, which resulted in a linear relationship between the endpoints and the equivalent points. In 120 s of soaking time, 60-70{\%} of the reagents were released. The spectrophotometric measurements of Fe2+ indicated that when an excess amount of the reagents was deposited onto the pieces of paper, they nonetheless sufficiently fulfilled the role of a reagent container.",
author = "Supatana Buking and Yusuke Suedomi and Duangjai Nacapricha and Takashi Kaneta",
year = "2019",
month = "9",
day = "17",
doi = "10.1021/acsomega.9b02226",
language = "English",
volume = "4",
pages = "15249--15254",
journal = "ACS Omega",
issn = "2470-1343",
publisher = "American Chemical Society",
number = "12",

}

TY - JOUR

T1 - Characterization of Pieces of Paper That Form Reagent Containers for Use as Portable Analytical Devices

AU - Buking, Supatana

AU - Suedomi, Yusuke

AU - Nacapricha, Duangjai

AU - Kaneta, Takashi

PY - 2019/9/17

Y1 - 2019/9/17

N2 - Reagent-deposited pieces of paper were characterized by the use of a compact conductometer, a compact pH sensor, and a conventional spectrophotometer to assess their suitability for use as reagent containers. The pieces of paper were fabricated by wax printing to form a limited hydrophilic area to which a consistent volume of an aqueous reagent could be added. The pieces of paper without the reagent increased the conductivity of water gradually because of the release of sodium salts, whereas pH of NaOH decreased because of the acidity of the functional groups in the paper. Three reagents, sulfamic acid as an acid, Na2CO3 as a base, and BaCl2 as a metal salt, were deposited on the pieces of paper to evaluate their ability to release from the pieces of paper. Sulfamic acid and Na2CO3 were released in quantities of 58 and 73% into water after 420 s, whereas 100% of BaCl2 was released after 480 s. The conductometric titrations of NaOH, HCl, and Na2SO4, and the spectrophotometry of Fe2+ were examined using the pieces of paper that contained sulfamic acid, Na2CO3, BaCl2, and 1,10-phenanthroline. Titrations using the pieces of paper suggested that the reagents were quantitatively released into the titrant, which resulted in a linear relationship between the endpoints and the equivalent points. In 120 s of soaking time, 60-70% of the reagents were released. The spectrophotometric measurements of Fe2+ indicated that when an excess amount of the reagents was deposited onto the pieces of paper, they nonetheless sufficiently fulfilled the role of a reagent container.

AB - Reagent-deposited pieces of paper were characterized by the use of a compact conductometer, a compact pH sensor, and a conventional spectrophotometer to assess their suitability for use as reagent containers. The pieces of paper were fabricated by wax printing to form a limited hydrophilic area to which a consistent volume of an aqueous reagent could be added. The pieces of paper without the reagent increased the conductivity of water gradually because of the release of sodium salts, whereas pH of NaOH decreased because of the acidity of the functional groups in the paper. Three reagents, sulfamic acid as an acid, Na2CO3 as a base, and BaCl2 as a metal salt, were deposited on the pieces of paper to evaluate their ability to release from the pieces of paper. Sulfamic acid and Na2CO3 were released in quantities of 58 and 73% into water after 420 s, whereas 100% of BaCl2 was released after 480 s. The conductometric titrations of NaOH, HCl, and Na2SO4, and the spectrophotometry of Fe2+ were examined using the pieces of paper that contained sulfamic acid, Na2CO3, BaCl2, and 1,10-phenanthroline. Titrations using the pieces of paper suggested that the reagents were quantitatively released into the titrant, which resulted in a linear relationship between the endpoints and the equivalent points. In 120 s of soaking time, 60-70% of the reagents were released. The spectrophotometric measurements of Fe2+ indicated that when an excess amount of the reagents was deposited onto the pieces of paper, they nonetheless sufficiently fulfilled the role of a reagent container.

UR - http://www.scopus.com/inward/record.url?scp=85072652608&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85072652608&partnerID=8YFLogxK

U2 - 10.1021/acsomega.9b02226

DO - 10.1021/acsomega.9b02226

M3 - Article

AN - SCOPUS:85072652608

VL - 4

SP - 15249

EP - 15254

JO - ACS Omega

JF - ACS Omega

SN - 2470-1343

IS - 12

ER -