Biosynthetic pathways of 3-epihydroxymugineic acid and 3-hydroxymugineic acid in gramineous plants

Jian Feng Ma, Kyosuke Nomoto

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

To elucidate the biosynthetic pathways of 3-epihydroxymugineic acid and 3-hydroxymugineic acid, feeding experiments using 2H- and/or 13C-labeled compounds were conducted with barley (Hordeum vulgare L. cv Ehimehadaka) and rye (Secale cereale L. cv Elubon), respectively. Feeding of [1, 4′, 4″13C3]2′-deoxymugineic acid (25 atom% 13C) to iron-deficient barley yielded mugineic acid and 3-epihydroxymugineic acid enriched with 13C at their corresponding positions. These results enabled us to demonstrate that 2′-deoxymugineic acid acts as a precursor for mugineic acid and 3-epihydroxymugineic acid. The 2H-labeled 3-hydroxymugineic acid was obtained by feeding d, l- [3, 3, 4, 42H4] methionine (98.6 atom% 2H) to iron-deficient rye plants. The 2H-NMR study revealed that two deuterium atoms (one each at the C-2′ and C-3 positions) from the three 2H-labeled methionine molecules were lost in 3-hydroxymugineic acid, whereas the other 10 deuterium atoms were incorporated in a manner similar to that of 2′-deoxymugineic acid and mugineic acid. These findings suggested that 3-hydroxymugineic acid, instead of being biosynthesized from 3-epihydroxymugineic acid by epimerization, was in fact derived from mugineic acid by hydroxylation at the C-3 position. This assumption was further confirmed by the results of the incorporation of 13C-labeled 2’-deoxymugineic acid into 3-hydroxymugineic acid. These results revealed that the biosynthetic pathways of both 3-epihydroxymugineic acid and 3-hydroxymugineic acid are as follows: L-methionineℲ2′-deoxymugineic acid→mugineic acid→3-epihydroxymugineic acid in barley and→hydroxymugineic acid in rye.

Original languageEnglish
Pages (from-to)311-317
Number of pages7
JournalSoil Science and Plant Nutrition
Volume40
Issue number2
DOIs
Publication statusPublished - Jun 1994
Externally publishedYes

Keywords

  • 3-epihydroxymugineic acid
  • 3-hydroxymugineic acid
  • Barley
  • Biosynthesis
  • Rye

ASJC Scopus subject areas

  • Soil Science
  • Plant Science

Fingerprint Dive into the research topics of 'Biosynthetic pathways of 3-epihydroxymugineic acid and 3-hydroxymugineic acid in gramineous plants'. Together they form a unique fingerprint.

  • Cite this