Biosynthetic pathways of 3-epihydroxymugineic acid and 3-hydroxymugineic acid in gramineous plants

Jian Feng Ma, Kyosuke Nomoto

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

To elucidate the biosynthetic pathways of 3-epihydroxymugineic acid and 3-hydroxymugineic acid, feeding experiments using 2H- and/or 13C-labeled compounds were conducted with barley (Hordeum vulgare L. cv Ehimehadaka) and rye (Secale cereale L. cv Elubon), respectively. Feeding of [1, 4′, 4″13C3]2′-deoxymugineic acid (25 atom% 13C) to iron-deficient barley yielded mugineic acid and 3-epihydroxymugineic acid enriched with 13C at their corresponding positions. These results enabled us to demonstrate that 2′-deoxymugineic acid acts as a precursor for mugineic acid and 3-epihydroxymugineic acid. The 2H-labeled 3-hydroxymugineic acid was obtained by feeding d, l- [3, 3, 4, 42H4] methionine (98.6 atom% 2H) to iron-deficient rye plants. The 2H-NMR study revealed that two deuterium atoms (one each at the C-2′ and C-3 positions) from the three 2H-labeled methionine molecules were lost in 3-hydroxymugineic acid, whereas the other 10 deuterium atoms were incorporated in a manner similar to that of 2′-deoxymugineic acid and mugineic acid. These findings suggested that 3-hydroxymugineic acid, instead of being biosynthesized from 3-epihydroxymugineic acid by epimerization, was in fact derived from mugineic acid by hydroxylation at the C-3 position. This assumption was further confirmed by the results of the incorporation of 13C-labeled 2’-deoxymugineic acid into 3-hydroxymugineic acid. These results revealed that the biosynthetic pathways of both 3-epihydroxymugineic acid and 3-hydroxymugineic acid are as follows: L-methionineℲ2′-deoxymugineic acid→mugineic acid→3-epihydroxymugineic acid in barley and→hydroxymugineic acid in rye.

Original languageEnglish
Pages (from-to)311-317
Number of pages7
JournalSoil Science and Plant Nutrition
Volume40
Issue number2
DOIs
Publication statusPublished - 1994
Externally publishedYes

Fingerprint

biochemical pathways
acids
acid
barley
rye
deuterium
methionine
iron
Secale cereale
hydroxylation
Hordeum vulgare

Keywords

  • 3-epihydroxymugineic acid
  • 3-hydroxymugineic acid
  • Barley
  • Biosynthesis
  • Rye

ASJC Scopus subject areas

  • Soil Science
  • Plant Science
  • Agronomy and Crop Science

Cite this

Biosynthetic pathways of 3-epihydroxymugineic acid and 3-hydroxymugineic acid in gramineous plants. / Ma, Jian Feng; Nomoto, Kyosuke.

In: Soil Science and Plant Nutrition, Vol. 40, No. 2, 1994, p. 311-317.

Research output: Contribution to journalArticle

@article{e0fcebc184a24320befcfd2fd108ecb9,
title = "Biosynthetic pathways of 3-epihydroxymugineic acid and 3-hydroxymugineic acid in gramineous plants",
abstract = "To elucidate the biosynthetic pathways of 3-epihydroxymugineic acid and 3-hydroxymugineic acid, feeding experiments using 2H- and/or 13C-labeled compounds were conducted with barley (Hordeum vulgare L. cv Ehimehadaka) and rye (Secale cereale L. cv Elubon), respectively. Feeding of [1, 4′, 4″13C3]2′-deoxymugineic acid (25 atom{\%} 13C) to iron-deficient barley yielded mugineic acid and 3-epihydroxymugineic acid enriched with 13C at their corresponding positions. These results enabled us to demonstrate that 2′-deoxymugineic acid acts as a precursor for mugineic acid and 3-epihydroxymugineic acid. The 2H-labeled 3-hydroxymugineic acid was obtained by feeding d, l- [3, 3, 4, 42H4] methionine (98.6 atom{\%} 2H) to iron-deficient rye plants. The 2H-NMR study revealed that two deuterium atoms (one each at the C-2′ and C-3 positions) from the three 2H-labeled methionine molecules were lost in 3-hydroxymugineic acid, whereas the other 10 deuterium atoms were incorporated in a manner similar to that of 2′-deoxymugineic acid and mugineic acid. These findings suggested that 3-hydroxymugineic acid, instead of being biosynthesized from 3-epihydroxymugineic acid by epimerization, was in fact derived from mugineic acid by hydroxylation at the C-3 position. This assumption was further confirmed by the results of the incorporation of 13C-labeled 2’-deoxymugineic acid into 3-hydroxymugineic acid. These results revealed that the biosynthetic pathways of both 3-epihydroxymugineic acid and 3-hydroxymugineic acid are as follows: L-methionineℲ2′-deoxymugineic acid→mugineic acid→3-epihydroxymugineic acid in barley and→hydroxymugineic acid in rye.",
keywords = "3-epihydroxymugineic acid, 3-hydroxymugineic acid, Barley, Biosynthesis, Rye",
author = "Ma, {Jian Feng} and Kyosuke Nomoto",
year = "1994",
doi = "10.1080/00380768.1994.10413305",
language = "English",
volume = "40",
pages = "311--317",
journal = "Soil Science and Plant Nutrition",
issn = "0038-0768",
publisher = "Taylor and Francis Ltd.",
number = "2",

}

TY - JOUR

T1 - Biosynthetic pathways of 3-epihydroxymugineic acid and 3-hydroxymugineic acid in gramineous plants

AU - Ma, Jian Feng

AU - Nomoto, Kyosuke

PY - 1994

Y1 - 1994

N2 - To elucidate the biosynthetic pathways of 3-epihydroxymugineic acid and 3-hydroxymugineic acid, feeding experiments using 2H- and/or 13C-labeled compounds were conducted with barley (Hordeum vulgare L. cv Ehimehadaka) and rye (Secale cereale L. cv Elubon), respectively. Feeding of [1, 4′, 4″13C3]2′-deoxymugineic acid (25 atom% 13C) to iron-deficient barley yielded mugineic acid and 3-epihydroxymugineic acid enriched with 13C at their corresponding positions. These results enabled us to demonstrate that 2′-deoxymugineic acid acts as a precursor for mugineic acid and 3-epihydroxymugineic acid. The 2H-labeled 3-hydroxymugineic acid was obtained by feeding d, l- [3, 3, 4, 42H4] methionine (98.6 atom% 2H) to iron-deficient rye plants. The 2H-NMR study revealed that two deuterium atoms (one each at the C-2′ and C-3 positions) from the three 2H-labeled methionine molecules were lost in 3-hydroxymugineic acid, whereas the other 10 deuterium atoms were incorporated in a manner similar to that of 2′-deoxymugineic acid and mugineic acid. These findings suggested that 3-hydroxymugineic acid, instead of being biosynthesized from 3-epihydroxymugineic acid by epimerization, was in fact derived from mugineic acid by hydroxylation at the C-3 position. This assumption was further confirmed by the results of the incorporation of 13C-labeled 2’-deoxymugineic acid into 3-hydroxymugineic acid. These results revealed that the biosynthetic pathways of both 3-epihydroxymugineic acid and 3-hydroxymugineic acid are as follows: L-methionineℲ2′-deoxymugineic acid→mugineic acid→3-epihydroxymugineic acid in barley and→hydroxymugineic acid in rye.

AB - To elucidate the biosynthetic pathways of 3-epihydroxymugineic acid and 3-hydroxymugineic acid, feeding experiments using 2H- and/or 13C-labeled compounds were conducted with barley (Hordeum vulgare L. cv Ehimehadaka) and rye (Secale cereale L. cv Elubon), respectively. Feeding of [1, 4′, 4″13C3]2′-deoxymugineic acid (25 atom% 13C) to iron-deficient barley yielded mugineic acid and 3-epihydroxymugineic acid enriched with 13C at their corresponding positions. These results enabled us to demonstrate that 2′-deoxymugineic acid acts as a precursor for mugineic acid and 3-epihydroxymugineic acid. The 2H-labeled 3-hydroxymugineic acid was obtained by feeding d, l- [3, 3, 4, 42H4] methionine (98.6 atom% 2H) to iron-deficient rye plants. The 2H-NMR study revealed that two deuterium atoms (one each at the C-2′ and C-3 positions) from the three 2H-labeled methionine molecules were lost in 3-hydroxymugineic acid, whereas the other 10 deuterium atoms were incorporated in a manner similar to that of 2′-deoxymugineic acid and mugineic acid. These findings suggested that 3-hydroxymugineic acid, instead of being biosynthesized from 3-epihydroxymugineic acid by epimerization, was in fact derived from mugineic acid by hydroxylation at the C-3 position. This assumption was further confirmed by the results of the incorporation of 13C-labeled 2’-deoxymugineic acid into 3-hydroxymugineic acid. These results revealed that the biosynthetic pathways of both 3-epihydroxymugineic acid and 3-hydroxymugineic acid are as follows: L-methionineℲ2′-deoxymugineic acid→mugineic acid→3-epihydroxymugineic acid in barley and→hydroxymugineic acid in rye.

KW - 3-epihydroxymugineic acid

KW - 3-hydroxymugineic acid

KW - Barley

KW - Biosynthesis

KW - Rye

UR - http://www.scopus.com/inward/record.url?scp=0028133953&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028133953&partnerID=8YFLogxK

U2 - 10.1080/00380768.1994.10413305

DO - 10.1080/00380768.1994.10413305

M3 - Article

VL - 40

SP - 311

EP - 317

JO - Soil Science and Plant Nutrition

JF - Soil Science and Plant Nutrition

SN - 0038-0768

IS - 2

ER -