Biosynthesis of phenylamide phytoalexins in pathogen-infected barley

Naoki Ube, Yukinori Yabuta, Takuji Tohnooka, Kotomi Ueno, Shin Taketa, Atsushi Ishihara

Research output: Contribution to journalArticle

Abstract

Phytoalexins are inducible antimicrobial metabolites in plants, and have been indicated to be important for the rejection of microbial infection. HPLC analysis detected the induced accumulation of three compounds 1–3 in barley (Hordeum vulgare) roots infected by Fusarium culmorum, the causal agent of Fusarium root rot. Compounds 1–3 were identified as cinnamic acid amides of 9-hydroxy-8-oxotryptamine, 8-oxotryptamine, and (1H-indol-3-yl)methylamine, respectively, by spectroscopic analysis. Compounds 1 and 2 had been previously reported from wheat, whereas 3 was an undescribed compound. We named 1–3 as triticamides A–C, respectively, because they were isolated from barley and wheat, which belong to the Triticeae tribe. These compounds showed antimicrobial activities, indicating that triticamides function as phytoalexins in barley. The administration of deuterium-labeled N-cinnamoyl tryptamine (CinTry) to barley roots resulted in the effective incorporation of CinTry into 1 and 2, which suggested that they were synthesized through the oxidation of CinTry. Nine putative tryptamine hydroxycinnamoyl transferase (THT)-encoding genes (HvTHT1–HvTHT9) were identified by database search on the basis of homology to known THT gene sequences from rice. Since HvTHT7 and HvTHT8 had the same sequences except one base, we measured their expression levels in total by RT-qPCR. HvTHT7/8 were markedly upregulated in response to infection by F. culmorum. The HvTHT7 and HvTHT8 enzymes preferred cinnamoyl- and feruloyl-CoAs as acyl donors and tryptamine as an acyl acceptor, and (1H-indol-3-yl)methylamine was also accepted as an acyl acceptor. These findings suggested that HvTHT7/8 are responsible for the induced accumulation of triticamides in barley.

Original languageEnglish
Article number5541
JournalInternational journal of molecular sciences
Volume20
Issue number22
DOIs
Publication statusPublished - Nov 2019

    Fingerprint

Keywords

  • Bipolaris sorokiniana
  • Fusarium culmorum
  • Fusarium graminearum
  • Hordeum vulgare
  • Phenylamide
  • Phytoalexin
  • Triticamide
  • Tryptamine N-hydroxycinnamoyl transferase

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Cite this