TY - JOUR
T1 - Base change of invariant subrings
AU - Hashimoto, Mitsuyasu
N1 - Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2007
Y1 - 2007
N2 - Let R be a Dedekind domain, G an affine flat R-group scheme, and B a flat R-algebra on which G acts. Let A → BG be an R-algebra map. Assume that A is Noetherian. We show that if the induced map K ⊗ A → (K ⊗ B)K⊗G is an isomorphism for any algebraically closed field K which is an R-algebra, then S ⊗ A → (S ⊗ B)S⊗G is an isomorphism for any R-algebra S.
AB - Let R be a Dedekind domain, G an affine flat R-group scheme, and B a flat R-algebra on which G acts. Let A → BG be an R-algebra map. Assume that A is Noetherian. We show that if the induced map K ⊗ A → (K ⊗ B)K⊗G is an isomorphism for any algebraically closed field K which is an R-algebra, then S ⊗ A → (S ⊗ B)S⊗G is an isomorphism for any R-algebra S.
UR - http://www.scopus.com/inward/record.url?scp=38349126998&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=38349126998&partnerID=8YFLogxK
U2 - 10.1017/S0027763000009405
DO - 10.1017/S0027763000009405
M3 - Article
AN - SCOPUS:38349126998
VL - 186
SP - 165
EP - 171
JO - Nagoya Mathematical Journal
JF - Nagoya Mathematical Journal
SN - 0027-7630
ER -