### Abstract

Let R be a Dedekind domain, G an affine flat R-group scheme, and B a flat R-algebra on which G acts. Let A → B^{G} be an R-algebra map. Assume that A is Noetherian. We show that if the induced map K ⊗ A → (K ⊗ B)^{K⊗G} is an isomorphism for any algebraically closed field K which is an R-algebra, then S ⊗ A → (S ⊗ B)^{S⊗G} is an isomorphism for any R-algebra S.

Original language | English |
---|---|

Pages (from-to) | 165-171 |

Number of pages | 7 |

Journal | Nagoya Mathematical Journal |

Volume | 186 |

DOIs | |

Publication status | Published - Jan 1 2007 |

### ASJC Scopus subject areas

- Mathematics(all)

## Fingerprint Dive into the research topics of 'Base change of invariant subrings'. Together they form a unique fingerprint.

## Cite this

Hashimoto, M. (2007). Base change of invariant subrings.

*Nagoya Mathematical Journal*,*186*, 165-171. https://doi.org/10.1017/S0027763000009405