Base change of invariant subrings

Mitsuyasu Hashimoto

Research output: Contribution to journalArticle

Abstract

Let R be a Dedekind domain, G an affine flat R-group scheme, and B a flat R-algebra on which G acts. Let A → BG be an R-algebra map. Assume that A is Noetherian. We show that if the induced map K ⊗ A → (K ⊗ B)K⊗G is an isomorphism for any algebraically closed field K which is an R-algebra, then S ⊗ A → (S ⊗ B)S⊗G is an isomorphism for any R-algebra S.

Original languageEnglish
Pages (from-to)165-171
Number of pages7
JournalNagoya Mathematical Journal
Volume186
Publication statusPublished - 2007
Externally publishedYes

Fingerprint

Base Change
Subring
Algebra
Invariant
Isomorphism
Dedekind Domain
Group Scheme
Noetherian
Algebraically closed

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Hashimoto, M. (2007). Base change of invariant subrings. Nagoya Mathematical Journal, 186, 165-171.

Base change of invariant subrings. / Hashimoto, Mitsuyasu.

In: Nagoya Mathematical Journal, Vol. 186, 2007, p. 165-171.

Research output: Contribution to journalArticle

Hashimoto, M 2007, 'Base change of invariant subrings', Nagoya Mathematical Journal, vol. 186, pp. 165-171.
Hashimoto, Mitsuyasu. / Base change of invariant subrings. In: Nagoya Mathematical Journal. 2007 ; Vol. 186. pp. 165-171.
@article{b50eac1efa4c4edd968b19ca6fa9f01f,
title = "Base change of invariant subrings",
abstract = "Let R be a Dedekind domain, G an affine flat R-group scheme, and B a flat R-algebra on which G acts. Let A → BG be an R-algebra map. Assume that A is Noetherian. We show that if the induced map K ⊗ A → (K ⊗ B)K⊗G is an isomorphism for any algebraically closed field K which is an R-algebra, then S ⊗ A → (S ⊗ B)S⊗G is an isomorphism for any R-algebra S.",
author = "Mitsuyasu Hashimoto",
year = "2007",
language = "English",
volume = "186",
pages = "165--171",
journal = "Nagoya Mathematical Journal",
issn = "0027-7630",
publisher = "Nagoya University",

}

TY - JOUR

T1 - Base change of invariant subrings

AU - Hashimoto, Mitsuyasu

PY - 2007

Y1 - 2007

N2 - Let R be a Dedekind domain, G an affine flat R-group scheme, and B a flat R-algebra on which G acts. Let A → BG be an R-algebra map. Assume that A is Noetherian. We show that if the induced map K ⊗ A → (K ⊗ B)K⊗G is an isomorphism for any algebraically closed field K which is an R-algebra, then S ⊗ A → (S ⊗ B)S⊗G is an isomorphism for any R-algebra S.

AB - Let R be a Dedekind domain, G an affine flat R-group scheme, and B a flat R-algebra on which G acts. Let A → BG be an R-algebra map. Assume that A is Noetherian. We show that if the induced map K ⊗ A → (K ⊗ B)K⊗G is an isomorphism for any algebraically closed field K which is an R-algebra, then S ⊗ A → (S ⊗ B)S⊗G is an isomorphism for any R-algebra S.

UR - http://www.scopus.com/inward/record.url?scp=38349126998&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=38349126998&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:38349126998

VL - 186

SP - 165

EP - 171

JO - Nagoya Mathematical Journal

JF - Nagoya Mathematical Journal

SN - 0027-7630

ER -