Barley Ant17, encoding flavanone 3-hydroxylase (F3H), is a promising target locus for attaining anthocyanin/proanthocyanidin-free plants without pleiotropic reduction of grain dormancy

Eiko Himi, Shin Taketa

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Preharvest sprouting is a serious problem in grain crop production because it causes quality deterioration and economic losses. It is well known that grain colour is closely associated with grain dormancy in wheat; white-grained lines without accumulating proanthocyanidins in testa tend to be more susceptible to preharvest sprouting than red ones. All available white-grained wheat lines are restricted to triple recessive mutations at the R loci (R-A1, R-B1, and R-D1), but barley is known to have 11 independent loci conferring the proanthocyanidin-free grain phenotype. In this study, we evaluated the dormancy levels of anthocyanin/proanthocyanidin-free ant17 mutants. Three ant17 mutants showed the same levels of dormancy as their respective wild types. Sequencing of three independent ant17 alleles detected a point mutation within the coding regions of flavanone-3-hydroxylase (F3H), which are predicted to cause a premature stop codon at different sites. The F3H locus completely cosegregated with the Ant17 position on the chromosome arm 2HL. Expression of the barley F3H gene was observed in pigmented tissues, but not in nonpigmented roots and stems. This result indicates that wheat F3H may be a promising new target locus for breeding white-grained lines with a practical level of preharvest sprouting resistance.

Original languageEnglish
Pages (from-to)43-53
Number of pages11
JournalGenome
Volume58
Issue number1
DOIs
Publication statusPublished - Apr 2 2015

Keywords

  • Ant mutant
  • Anthocyanin
  • Grain dormancy
  • Preharvest sprouting
  • Proanthocyanidins

ASJC Scopus subject areas

  • Biotechnology
  • Molecular Biology
  • Genetics

Fingerprint Dive into the research topics of 'Barley Ant17, encoding flavanone 3-hydroxylase (F3H), is a promising target locus for attaining anthocyanin/proanthocyanidin-free plants without pleiotropic reduction of grain dormancy'. Together they form a unique fingerprint.

  • Cite this