Asymmetric hydration structure around calcium ion restricted in micropores fabricated in activated carbons

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

The adsorbed phase and hydration structure of an aqueous solution of Ca(NO3)2 restricted in micropores fabricated in activated carbons (ACs) having different average pore widths (0.63 and 1.1 nm) were investigated with the analysis of adsorption isotherms and x-ray absorption fine structure (XAFS) spectra on Ca K-edge. The adsorbed density of Ca(2+) per unit micropore volume in the narrower pore was higher than in the wider pore, while the adsorbed amount per unit mass of carbon with the narrower pore was half of the amount of ACs with the larger pore. On the other hand, variations in the bands assigned to double-electron (KM I) and 1s  →  3d excitations in XAFS spectra demonstrate the formation of a distorted hydration cluster around Ca(2+) in the micropore, although the structural parameters of hydrated Ca(2+) in the micropores were almost consistent with the bulk aqueous solution, as revealed by the analysis of extended XAFS (EXAFS) spectra. In contrast to the hydration structure of monovalent ions such as Rb(+), which generally presents a dehydrated structure in smaller than 1 nm micropores in ACs, the present study clearly explains that the non-spherically-symmetric structure of hydrated Ca(2+) restricted in carbon micropores whose sizes are around 1 nm is experimentally revealed where any dehydration phenomena from the first hydration shell around Ca(2+) could not be observed.

Original languageEnglish
Pages (from-to)464003
Number of pages7
JournalJournal of Physics Condensed Matter
Volume28
Issue number46
DOIs
Publication statusPublished - Nov 23 2016

Fingerprint

activated carbon
Hydration
Activated carbon
hydration
calcium
Calcium
Ions
porosity
x ray absorption
X rays
fine structure
ions
Carbon
aqueous solutions
Dehydration
Adsorption isotherms
carbon
dehydration
isotherms
Electrons

Keywords

  • Journal Article

Cite this

Asymmetric hydration structure around calcium ion restricted in micropores fabricated in activated carbons. / Ohkubo, Takahiro; Kusudo, Tomoko; Kuroda, Yasushige.

In: Journal of Physics Condensed Matter, Vol. 28, No. 46, 23.11.2016, p. 464003.

Research output: Contribution to journalArticle

@article{e998bdab9dc246268aaf907d7f4f8065,
title = "Asymmetric hydration structure around calcium ion restricted in micropores fabricated in activated carbons",
abstract = "The adsorbed phase and hydration structure of an aqueous solution of Ca(NO3)2 restricted in micropores fabricated in activated carbons (ACs) having different average pore widths (0.63 and 1.1 nm) were investigated with the analysis of adsorption isotherms and x-ray absorption fine structure (XAFS) spectra on Ca K-edge. The adsorbed density of Ca(2+) per unit micropore volume in the narrower pore was higher than in the wider pore, while the adsorbed amount per unit mass of carbon with the narrower pore was half of the amount of ACs with the larger pore. On the other hand, variations in the bands assigned to double-electron (KM I) and 1s  →  3d excitations in XAFS spectra demonstrate the formation of a distorted hydration cluster around Ca(2+) in the micropore, although the structural parameters of hydrated Ca(2+) in the micropores were almost consistent with the bulk aqueous solution, as revealed by the analysis of extended XAFS (EXAFS) spectra. In contrast to the hydration structure of monovalent ions such as Rb(+), which generally presents a dehydrated structure in smaller than 1 nm micropores in ACs, the present study clearly explains that the non-spherically-symmetric structure of hydrated Ca(2+) restricted in carbon micropores whose sizes are around 1 nm is experimentally revealed where any dehydration phenomena from the first hydration shell around Ca(2+) could not be observed.",
keywords = "Journal Article",
author = "Takahiro Ohkubo and Tomoko Kusudo and Yasushige Kuroda",
year = "2016",
month = "11",
day = "23",
doi = "10.1088/0953-8984/28/46/464003",
language = "English",
volume = "28",
pages = "464003",
journal = "Journal of Physics Condensed Matter",
issn = "0953-8984",
publisher = "IOP Publishing Ltd.",
number = "46",

}

TY - JOUR

T1 - Asymmetric hydration structure around calcium ion restricted in micropores fabricated in activated carbons

AU - Ohkubo, Takahiro

AU - Kusudo, Tomoko

AU - Kuroda, Yasushige

PY - 2016/11/23

Y1 - 2016/11/23

N2 - The adsorbed phase and hydration structure of an aqueous solution of Ca(NO3)2 restricted in micropores fabricated in activated carbons (ACs) having different average pore widths (0.63 and 1.1 nm) were investigated with the analysis of adsorption isotherms and x-ray absorption fine structure (XAFS) spectra on Ca K-edge. The adsorbed density of Ca(2+) per unit micropore volume in the narrower pore was higher than in the wider pore, while the adsorbed amount per unit mass of carbon with the narrower pore was half of the amount of ACs with the larger pore. On the other hand, variations in the bands assigned to double-electron (KM I) and 1s  →  3d excitations in XAFS spectra demonstrate the formation of a distorted hydration cluster around Ca(2+) in the micropore, although the structural parameters of hydrated Ca(2+) in the micropores were almost consistent with the bulk aqueous solution, as revealed by the analysis of extended XAFS (EXAFS) spectra. In contrast to the hydration structure of monovalent ions such as Rb(+), which generally presents a dehydrated structure in smaller than 1 nm micropores in ACs, the present study clearly explains that the non-spherically-symmetric structure of hydrated Ca(2+) restricted in carbon micropores whose sizes are around 1 nm is experimentally revealed where any dehydration phenomena from the first hydration shell around Ca(2+) could not be observed.

AB - The adsorbed phase and hydration structure of an aqueous solution of Ca(NO3)2 restricted in micropores fabricated in activated carbons (ACs) having different average pore widths (0.63 and 1.1 nm) were investigated with the analysis of adsorption isotherms and x-ray absorption fine structure (XAFS) spectra on Ca K-edge. The adsorbed density of Ca(2+) per unit micropore volume in the narrower pore was higher than in the wider pore, while the adsorbed amount per unit mass of carbon with the narrower pore was half of the amount of ACs with the larger pore. On the other hand, variations in the bands assigned to double-electron (KM I) and 1s  →  3d excitations in XAFS spectra demonstrate the formation of a distorted hydration cluster around Ca(2+) in the micropore, although the structural parameters of hydrated Ca(2+) in the micropores were almost consistent with the bulk aqueous solution, as revealed by the analysis of extended XAFS (EXAFS) spectra. In contrast to the hydration structure of monovalent ions such as Rb(+), which generally presents a dehydrated structure in smaller than 1 nm micropores in ACs, the present study clearly explains that the non-spherically-symmetric structure of hydrated Ca(2+) restricted in carbon micropores whose sizes are around 1 nm is experimentally revealed where any dehydration phenomena from the first hydration shell around Ca(2+) could not be observed.

KW - Journal Article

U2 - 10.1088/0953-8984/28/46/464003

DO - 10.1088/0953-8984/28/46/464003

M3 - Article

VL - 28

SP - 464003

JO - Journal of Physics Condensed Matter

JF - Journal of Physics Condensed Matter

SN - 0953-8984

IS - 46

ER -