Abstract
In this article, a position/force control system is first designed for industrial robots with an open architecture controller. Position and orientation of the tool attached to the tip of an industrial robot are controlled based on the model designed by a CAD system. Also, force including kinetic friction is controlled through a desired impedance model. The both manipulated variables generated from the position control system and force control system are velocity quantity in Cartesian-coordinate system, so that the hybrid control system can be easily applied to industrial robots with an open architecture controller. Next, we introduce two examples of applications being utilized in actual manufacturing process. One is the 3D robot sander which sands the free-formed surface of wooden materials. The finished wooden workpiece with curved surface is used for a part constructing a piece of artistic furniture. The other is the mold polishing robot which finishes aluminum PET bottle blow molds. Further, the application limit of articulated-type industrial robots is quantitatively evaluated through a simple static position/force measurement. Finally, a simulation technique is presented for the discrete-time control system of an open architectural industrial robot by giving an example of a fuzzy force controller.
Original language | English |
---|---|
Title of host publication | Computer Design and Computational Defense Systems |
Publisher | Nova Science Publishers, Inc. |
Pages | 227-266 |
Number of pages | 40 |
ISBN (Print) | 9781611227567 |
Publication status | Published - Jan 2011 |
Externally published | Yes |
Keywords
- CAD/CAM
- Discrete-time control system
- Dynamic simulation
- Industrial robot
- Open architecture
- Polishing robot
- Position/force control
- Robot sander
ASJC Scopus subject areas
- Computer Science(all)