Abstract
An analytical study of the anisotropic velocity correlation spectrum tensor in the inertial subrange of homogeneous turbulent shear flow is performed using a Lagrangian renormalized spectral closure approximation. The analysis shows that the spectrum in the asymptotic limit of infinitely large Reynolds numbers Re is determined by two nondimensional universal constants; theoritical estimates for the constants are provided. The anisotropic component of the spectrum at finite Re is more sensitive to large-scale turbulence structures than the isotropic component. A preliminary analysis of the effect of finite Re or the width of the inertial subrange is in qualitative agreement with direct numerical simulations.
Original language | English |
---|---|
Pages (from-to) | 2385-2397 |
Number of pages | 13 |
Journal | Physics of Fluids |
Volume | 15 |
Issue number | 8 |
DOIs | |
Publication status | Published - Aug 2003 |
Externally published | Yes |
ASJC Scopus subject areas
- Computational Mechanics
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- Fluid Flow and Transfer Processes