Analysis of task feasibility for a home robot using prismatic joints

Tomoaki Mashimo, Rosen Diankov, Takateru Urakubo, Takeo Kanade

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Citations (Scopus)

Abstract

This paper evaluates the dynamic and kinematic properties of a prismatic mechanism and shows its capabilities in performing home manipulation tasks when integrated into a robotic arm. Our design is motivated from the observation that human hand motions often follow a linear trajectory when manipulating everyday objects. We present the mechanical design for a light-weight, energy-efficient robot named PRISM that emphasizes translational motion. By simulating the dynamics equations and comparing the structure of commonly used anthropomorphic arms and our proposed arm, we verify that translational motion is more energy efficient with PRISM, and the robot can maneuver itself in narrower places. Through simulation experiments using state of the art manipulation planning algorithms, we analyze the success rates of PRISM and an anthropomorphic robot arm in performing basic tasks. The simulation experiments center on pick-and-place tasks in cluttered kitchen scenes. We show a real-world prototype of PRISM and perform several manipulation experiments with it.

Original languageEnglish
Title of host publicationIEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings
Pages2370-2376
Number of pages7
DOIs
Publication statusPublished - 2010
Externally publishedYes
Event23rd IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Taipei, Taiwan, Province of China
Duration: Oct 18 2010Oct 22 2010

Publication series

NameIEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings

Other

Other23rd IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010
Country/TerritoryTaiwan, Province of China
CityTaipei
Period10/18/1010/22/10

ASJC Scopus subject areas

  • Artificial Intelligence
  • Human-Computer Interaction
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Analysis of task feasibility for a home robot using prismatic joints'. Together they form a unique fingerprint.

Cite this