An ER-Localized Form of PV72, a Seed-Specific Vacuolar Sorting Receptor, Interferes the Transport of an NPIR-Containing Proteinase in Arabidopsis Leaves

Etsuko Watanabe, Tomoo Shimada, Kentaro Tamura, Ryo Matsushima, Yasuko Koumoto, Mikio Nishimura, Ikuko Hara-Nishimura

Research output: Contribution to journalArticle

45 Citations (Scopus)

Abstract

Putative vacuolar sorting receptors that bind to the vacuolar targeting signals have been found in various plants; pumpkin PV72, pea BP-80 and Arabidopsis AtELP. PV72 is a seed-specific receptor that is predicted to sort seed storage proteins to protein storage vacuoles. Analysis by surface plasmon resonance showed that the lumenal domain of PV72 bound to an NPIR (a typical vacuolar targeting signal)-containing peptide of the precursor of a cysteine proteinase, AtALEU, in the presence of Ca2+ (KD = 0.1 μM). To elucidate the receptor-dependent transport of vacuolar proteins in plant cells, we produced transgenic Arabidopsis plants that expressed a fusion protein (PV72-HDEL) composed of the lumenal domain of PV72 and an endoplasmic reticulum (ER)-retention signal, HDEL. The expression of PV72-HDEL induced the accumulation of the AtALEU precursor. The accumulation level of the AtALEU precursor was dependent on that of PV72-HDEL. In contrast, it did not induce the accumulation of a precursor of another cysteine proteinase, RD21, which contains no NPIR. Detailed subcellular localization revealed that both the AtALEU precursor and PV72-HDEL accumulated in the ER fraction. We found that most of the AtALEU precursor molecules formed a complex with PV72-HDEL. The AtALEU precursor might be trapped by PV72-HDEL in the ER and not transported to the vacuoles. This in-planta analysis supports the hypothesis that an Arabidopsis homolog of PV72 functions as a sorting receptor for the NPIR-containing proteinase. The overall results suggest that vacuolar sorting receptors for the protein storage vacuoles and the lytic vacuoles share the similar recognition mechanism for a vacuolar targeting signal.

Original languageEnglish
Pages (from-to)9-17
Number of pages9
JournalPlant and Cell Physiology
Volume45
Issue number1
DOIs
Publication statusPublished - Jan 1 2004
Externally publishedYes

Keywords

  • Arabidopsis thaliana
  • Ligand-receptor interaction
  • PV72
  • Vacuolar proteins
  • Vacuolar sorting receptor
  • Vacuolar targeting signal

ASJC Scopus subject areas

  • Physiology
  • Plant Science
  • Cell Biology

Fingerprint Dive into the research topics of 'An ER-Localized Form of PV72, a Seed-Specific Vacuolar Sorting Receptor, Interferes the Transport of an NPIR-Containing Proteinase in Arabidopsis Leaves'. Together they form a unique fingerprint.

  • Cite this