An ab initio calculation of 17O and 29Si NMR parameters for SiO2 polymorphs

    Research output: Contribution to journalArticlepeer-review

    51 Citations (Scopus)


    Ab initio molecular orbital calculations (Hartree-Fock, HF and density functional theories, DFTs) have been carried out for SiO2 polymorphs coesite, low cristobalite, and α-quartz, in order to investigate the reliability of this method for predicting 29Si and 17O nuclear magnetic resonance (NMR) properties of silicates. Oxygen- and silicon-centered clusters consisting of one (1T) to three tetrahedral (3T) shells (one to four atomic shells), taken from real crystal structure, have been investigated. It is found that for reasonable predication of both the 29Si and 17O chemical shifts (δiSi and δiO), the minimum cluster is one that gives the correct second neighbors to the nucleus of interest. Both the δiSi and δiO have reached convergence with respect to cluster size at the OH-terminated two tetrahedral (2T) shell (three atomic shells around Si and four atomic shells around O) model. At convergence, the calculated δiSi values agree well (within ±1 ppm) with experimental data. The calculated 17O electric field gradient (EFG)-related parameters also agree with experimental data within experimental uncertainties. The calculation also reproduces small differences in δiO for O sites with similar tetrahedral connectivities, but shows deviations up to about 10 ppm in relative difference for O sites with different tetrahedral connectivities. The poor performance for the latter is mainly due to the approximations of the HF method. Our study thus suggests that the ab initio calculation method is a reliable mean for predicting 29Si and 17O NMR parameters for silicates. Such an approach should find application not only to well-ordered crystalline phases, but also to disordered materials, by combining with other techniques, such as the molecular dynamics simulation method.

    Original languageEnglish
    Pages (from-to)245-259
    Number of pages15
    JournalSolid State Nuclear Magnetic Resonance
    Issue number4
    Publication statusPublished - Jul 2000


    • Ab initio
    • Cluster
    • Crystal structure
    • NMR
    • SiO polymorph

    ASJC Scopus subject areas

    • Radiation
    • Chemistry(all)
    • Nuclear and High Energy Physics
    • Instrumentation


    Dive into the research topics of 'An ab initio calculation of <sup>17</sup>O and <sup>29</sup>Si NMR parameters for SiO<sub>2</sub> polymorphs'. Together they form a unique fingerprint.

    Cite this