Amphiphysin I is associated with coated endocytic intermediates and undergoes stimulation-dependent dephosphorylation in nerve terminals

Rudolf Bauerfeind, Kohji Takei, Pietro De Camilli

Research output: Contribution to journalArticle

133 Citations (Scopus)

Abstract

Amphiphysin I is an abundant presynaptic protein that interacts via its COOH-terminal src homology 3 (SH3) domain with the GTPase dynamin I and the inositol-5-phosphatase synaptojanin. Both dynamin I and synaptojanin I have a putative role in synaptic vesicle recycling and undergo rapid dephosphorylation in rat brain synaptosomes stimulated to secrete by a depolarizing stimulus. We show here that amphiphysin I also undergoes constitutive phosphorylation and stimulation-dependent dephosphorylation. Dephosphorylation of amphiphysin I requires extracellular Ca2+ and is unaffected by pretreatment of synaptosomes with tetanus toxin. Thus, Ca2+ influx, but not synaptic vesicle exocytosis, is required for dephosphorylation. Dephosphorylation of amphiphysin I, like dephosphorylation of dynamin I and synaptojanin I, is inhibited by cyclosporin A and FK-506 (0.5 μM), two drugs that specifically block the Ca2+/calmodulin-dependent phosphatase 2B calcineurin, but not by okadaic acid (1 μM), which blocks protein phosphatases 1 and 2B. We also show by immunogold electron microscopy immunocytochemistry that amphiphysin I is localized in the nerve terminal cytomatrix and is partially associated with endocytic intermediates. These include the clathrin-coated buds and dynamin-coated tubules, which accumulate in nerve terminal membranes incubated in the presence of guanosine 5'-3-O- (thio)triphosphate. These data support the hypothesis that amphiphysin I, dynamin I, and synaptojanin I are physiological partners in some step(s) of synaptic vesicle endocytosis. We hypothesize that the parallel Ca2+- dependent calcineurin-dependent dephosphorylation of amphiphysin I and of its two major binding proteins is part of a process that primes the nerve terminal for endocytosis in response to a burst of exocytosis.

Original languageEnglish
Pages (from-to)30984-30992
Number of pages9
JournalJournal of Biological Chemistry
Volume272
Issue number49
DOIs
Publication statusPublished - Dec 5 1997
Externally publishedYes

Fingerprint

Dynamin I
Synaptic Vesicles
Calcineurin
Synaptosomes
Exocytosis
Endocytosis
Phosphoric Monoester Hydrolases
Dynamins
Tetanus Toxin
Guanosine 5'-O-(3-Thiotriphosphate)
Protein Phosphatase 1
Okadaic Acid
Clathrin
Phosphorylation
src Homology Domains
GTP Phosphohydrolases
Tacrolimus
Inositol
Calmodulin
amphiphysin

ASJC Scopus subject areas

  • Biochemistry

Cite this

Amphiphysin I is associated with coated endocytic intermediates and undergoes stimulation-dependent dephosphorylation in nerve terminals. / Bauerfeind, Rudolf; Takei, Kohji; De Camilli, Pietro.

In: Journal of Biological Chemistry, Vol. 272, No. 49, 05.12.1997, p. 30984-30992.

Research output: Contribution to journalArticle

@article{6910ad3c87e642cebfe486ea892714a9,
title = "Amphiphysin I is associated with coated endocytic intermediates and undergoes stimulation-dependent dephosphorylation in nerve terminals",
abstract = "Amphiphysin I is an abundant presynaptic protein that interacts via its COOH-terminal src homology 3 (SH3) domain with the GTPase dynamin I and the inositol-5-phosphatase synaptojanin. Both dynamin I and synaptojanin I have a putative role in synaptic vesicle recycling and undergo rapid dephosphorylation in rat brain synaptosomes stimulated to secrete by a depolarizing stimulus. We show here that amphiphysin I also undergoes constitutive phosphorylation and stimulation-dependent dephosphorylation. Dephosphorylation of amphiphysin I requires extracellular Ca2+ and is unaffected by pretreatment of synaptosomes with tetanus toxin. Thus, Ca2+ influx, but not synaptic vesicle exocytosis, is required for dephosphorylation. Dephosphorylation of amphiphysin I, like dephosphorylation of dynamin I and synaptojanin I, is inhibited by cyclosporin A and FK-506 (0.5 μM), two drugs that specifically block the Ca2+/calmodulin-dependent phosphatase 2B calcineurin, but not by okadaic acid (1 μM), which blocks protein phosphatases 1 and 2B. We also show by immunogold electron microscopy immunocytochemistry that amphiphysin I is localized in the nerve terminal cytomatrix and is partially associated with endocytic intermediates. These include the clathrin-coated buds and dynamin-coated tubules, which accumulate in nerve terminal membranes incubated in the presence of guanosine 5'-3-O- (thio)triphosphate. These data support the hypothesis that amphiphysin I, dynamin I, and synaptojanin I are physiological partners in some step(s) of synaptic vesicle endocytosis. We hypothesize that the parallel Ca2+- dependent calcineurin-dependent dephosphorylation of amphiphysin I and of its two major binding proteins is part of a process that primes the nerve terminal for endocytosis in response to a burst of exocytosis.",
author = "Rudolf Bauerfeind and Kohji Takei and {De Camilli}, Pietro",
year = "1997",
month = "12",
day = "5",
doi = "10.1074/jbc.272.49.30984",
language = "English",
volume = "272",
pages = "30984--30992",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "49",

}

TY - JOUR

T1 - Amphiphysin I is associated with coated endocytic intermediates and undergoes stimulation-dependent dephosphorylation in nerve terminals

AU - Bauerfeind, Rudolf

AU - Takei, Kohji

AU - De Camilli, Pietro

PY - 1997/12/5

Y1 - 1997/12/5

N2 - Amphiphysin I is an abundant presynaptic protein that interacts via its COOH-terminal src homology 3 (SH3) domain with the GTPase dynamin I and the inositol-5-phosphatase synaptojanin. Both dynamin I and synaptojanin I have a putative role in synaptic vesicle recycling and undergo rapid dephosphorylation in rat brain synaptosomes stimulated to secrete by a depolarizing stimulus. We show here that amphiphysin I also undergoes constitutive phosphorylation and stimulation-dependent dephosphorylation. Dephosphorylation of amphiphysin I requires extracellular Ca2+ and is unaffected by pretreatment of synaptosomes with tetanus toxin. Thus, Ca2+ influx, but not synaptic vesicle exocytosis, is required for dephosphorylation. Dephosphorylation of amphiphysin I, like dephosphorylation of dynamin I and synaptojanin I, is inhibited by cyclosporin A and FK-506 (0.5 μM), two drugs that specifically block the Ca2+/calmodulin-dependent phosphatase 2B calcineurin, but not by okadaic acid (1 μM), which blocks protein phosphatases 1 and 2B. We also show by immunogold electron microscopy immunocytochemistry that amphiphysin I is localized in the nerve terminal cytomatrix and is partially associated with endocytic intermediates. These include the clathrin-coated buds and dynamin-coated tubules, which accumulate in nerve terminal membranes incubated in the presence of guanosine 5'-3-O- (thio)triphosphate. These data support the hypothesis that amphiphysin I, dynamin I, and synaptojanin I are physiological partners in some step(s) of synaptic vesicle endocytosis. We hypothesize that the parallel Ca2+- dependent calcineurin-dependent dephosphorylation of amphiphysin I and of its two major binding proteins is part of a process that primes the nerve terminal for endocytosis in response to a burst of exocytosis.

AB - Amphiphysin I is an abundant presynaptic protein that interacts via its COOH-terminal src homology 3 (SH3) domain with the GTPase dynamin I and the inositol-5-phosphatase synaptojanin. Both dynamin I and synaptojanin I have a putative role in synaptic vesicle recycling and undergo rapid dephosphorylation in rat brain synaptosomes stimulated to secrete by a depolarizing stimulus. We show here that amphiphysin I also undergoes constitutive phosphorylation and stimulation-dependent dephosphorylation. Dephosphorylation of amphiphysin I requires extracellular Ca2+ and is unaffected by pretreatment of synaptosomes with tetanus toxin. Thus, Ca2+ influx, but not synaptic vesicle exocytosis, is required for dephosphorylation. Dephosphorylation of amphiphysin I, like dephosphorylation of dynamin I and synaptojanin I, is inhibited by cyclosporin A and FK-506 (0.5 μM), two drugs that specifically block the Ca2+/calmodulin-dependent phosphatase 2B calcineurin, but not by okadaic acid (1 μM), which blocks protein phosphatases 1 and 2B. We also show by immunogold electron microscopy immunocytochemistry that amphiphysin I is localized in the nerve terminal cytomatrix and is partially associated with endocytic intermediates. These include the clathrin-coated buds and dynamin-coated tubules, which accumulate in nerve terminal membranes incubated in the presence of guanosine 5'-3-O- (thio)triphosphate. These data support the hypothesis that amphiphysin I, dynamin I, and synaptojanin I are physiological partners in some step(s) of synaptic vesicle endocytosis. We hypothesize that the parallel Ca2+- dependent calcineurin-dependent dephosphorylation of amphiphysin I and of its two major binding proteins is part of a process that primes the nerve terminal for endocytosis in response to a burst of exocytosis.

UR - http://www.scopus.com/inward/record.url?scp=0030695315&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030695315&partnerID=8YFLogxK

U2 - 10.1074/jbc.272.49.30984

DO - 10.1074/jbc.272.49.30984

M3 - Article

C2 - 9388246

AN - SCOPUS:0030695315

VL - 272

SP - 30984

EP - 30992

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 49

ER -