Adsorption of methane and CO2 onto olivine surfaces in Martian dust conditions

Elizabeth Escamilla-Roa, Javier Martin-Torres, C. Ignacio Sainz-Díaz

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Methane has been detected on all planets of our Solar System, and most of the larger moons, as well as in dwarf-planets like Pluto and Eric. The presence of this molecule in rocky planets is very interesting because its presence in the Earth's atmosphere is mainly related to biotic processes. Space instrumentation in orbiters around Mars has detected olivine on the Martian soil and dust. On the other hand the measurements of methane from the Curiosity rover report detection of background levels of atmospheric methane with abundance that is lower than model estimates of ultraviolet degradation of accreted interplanetary dust particles or carbonaceous chondrite material. Additionally, elevated levels of methane about this background have been observed implying that Mars is episodically producing methane from an additional unknown source, making the reasons of these temporal fluctuations of methane a hot topic in planetary research. The goal of this study is to investigate at atomic level the interactions during the adsorption processes of methane and other Mars atmospheric species (CO2, H2O) on forsterite surfaces, through electronic structure calculations based on the Density Functional Theory (DFT). We propose two models to simulate the interaction of adsorbates with the surface of dust mineral, such as binary mixtures (5CH4+5H2O/5CH4+5CO2) and as a semi-clathrate adsorption. We have obtained interesting results of the adsorption process in the mixture 5CH4+5CO2. Associative and dissociative adsorptions were observed for water and CO2 molecules. The methane molecules were only trapped and held by water or CO2 molecules. In the dipolar surface, the adsorption of CO2 molecules produced new species: one CO from a CO2 dissociation, and, two CO2 molecules chemisorbed to mineral surface forming in one case a carbonate group. Our results suggest that CO2 has a strong interaction with the mineral surface when methane is present. These results could be confirmed after the analysis of the data from the upcoming remote and in-situ observations on Mars, as those to be performed by instruments on the ESA's ExoMars Trace Gas Orbiter and ExoMars rover.

Original languageEnglish
Pages (from-to)163-171
Number of pages9
JournalPlanetary and Space Science
Volume153
DOIs
Publication statusPublished - Apr 1 2018
Externally publishedYes

Fingerprint

olivine
methane
dust
adsorption
mars
Mars
molecules
planet
minerals
planets
mineral
dwarf planets
carbonate group
interplanetary dust
clathrate
Pluto (planet)
Pluto
carbonaceous chondrites
forsterite
carbonaceous chondrite

Keywords

  • Carbonate
  • Chemisorption
  • Dissociation process
  • Methane and carbon dioxide
  • Surfaces forsterite
  • Vibration spectroscopy

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this

Adsorption of methane and CO2 onto olivine surfaces in Martian dust conditions. / Escamilla-Roa, Elizabeth; Martin-Torres, Javier; Sainz-Díaz, C. Ignacio.

In: Planetary and Space Science, Vol. 153, 01.04.2018, p. 163-171.

Research output: Contribution to journalArticle

Escamilla-Roa, Elizabeth ; Martin-Torres, Javier ; Sainz-Díaz, C. Ignacio. / Adsorption of methane and CO2 onto olivine surfaces in Martian dust conditions. In: Planetary and Space Science. 2018 ; Vol. 153. pp. 163-171.
@article{166738a1ecfd496ea90a1a6bb507b2b0,
title = "Adsorption of methane and CO2 onto olivine surfaces in Martian dust conditions",
abstract = "Methane has been detected on all planets of our Solar System, and most of the larger moons, as well as in dwarf-planets like Pluto and Eric. The presence of this molecule in rocky planets is very interesting because its presence in the Earth's atmosphere is mainly related to biotic processes. Space instrumentation in orbiters around Mars has detected olivine on the Martian soil and dust. On the other hand the measurements of methane from the Curiosity rover report detection of background levels of atmospheric methane with abundance that is lower than model estimates of ultraviolet degradation of accreted interplanetary dust particles or carbonaceous chondrite material. Additionally, elevated levels of methane about this background have been observed implying that Mars is episodically producing methane from an additional unknown source, making the reasons of these temporal fluctuations of methane a hot topic in planetary research. The goal of this study is to investigate at atomic level the interactions during the adsorption processes of methane and other Mars atmospheric species (CO2, H2O) on forsterite surfaces, through electronic structure calculations based on the Density Functional Theory (DFT). We propose two models to simulate the interaction of adsorbates with the surface of dust mineral, such as binary mixtures (5CH4+5H2O/5CH4+5CO2) and as a semi-clathrate adsorption. We have obtained interesting results of the adsorption process in the mixture 5CH4+5CO2. Associative and dissociative adsorptions were observed for water and CO2 molecules. The methane molecules were only trapped and held by water or CO2 molecules. In the dipolar surface, the adsorption of CO2 molecules produced new species: one CO from a CO2 dissociation, and, two CO2 molecules chemisorbed to mineral surface forming in one case a carbonate group. Our results suggest that CO2 has a strong interaction with the mineral surface when methane is present. These results could be confirmed after the analysis of the data from the upcoming remote and in-situ observations on Mars, as those to be performed by instruments on the ESA's ExoMars Trace Gas Orbiter and ExoMars rover.",
keywords = "Carbonate, Chemisorption, Dissociation process, Methane and carbon dioxide, Surfaces forsterite, Vibration spectroscopy",
author = "Elizabeth Escamilla-Roa and Javier Martin-Torres and Sainz-D{\'i}az, {C. Ignacio}",
year = "2018",
month = "4",
day = "1",
doi = "10.1016/j.pss.2018.02.008",
language = "English",
volume = "153",
pages = "163--171",
journal = "Planetary and Space Science",
issn = "0032-0633",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Adsorption of methane and CO2 onto olivine surfaces in Martian dust conditions

AU - Escamilla-Roa, Elizabeth

AU - Martin-Torres, Javier

AU - Sainz-Díaz, C. Ignacio

PY - 2018/4/1

Y1 - 2018/4/1

N2 - Methane has been detected on all planets of our Solar System, and most of the larger moons, as well as in dwarf-planets like Pluto and Eric. The presence of this molecule in rocky planets is very interesting because its presence in the Earth's atmosphere is mainly related to biotic processes. Space instrumentation in orbiters around Mars has detected olivine on the Martian soil and dust. On the other hand the measurements of methane from the Curiosity rover report detection of background levels of atmospheric methane with abundance that is lower than model estimates of ultraviolet degradation of accreted interplanetary dust particles or carbonaceous chondrite material. Additionally, elevated levels of methane about this background have been observed implying that Mars is episodically producing methane from an additional unknown source, making the reasons of these temporal fluctuations of methane a hot topic in planetary research. The goal of this study is to investigate at atomic level the interactions during the adsorption processes of methane and other Mars atmospheric species (CO2, H2O) on forsterite surfaces, through electronic structure calculations based on the Density Functional Theory (DFT). We propose two models to simulate the interaction of adsorbates with the surface of dust mineral, such as binary mixtures (5CH4+5H2O/5CH4+5CO2) and as a semi-clathrate adsorption. We have obtained interesting results of the adsorption process in the mixture 5CH4+5CO2. Associative and dissociative adsorptions were observed for water and CO2 molecules. The methane molecules were only trapped and held by water or CO2 molecules. In the dipolar surface, the adsorption of CO2 molecules produced new species: one CO from a CO2 dissociation, and, two CO2 molecules chemisorbed to mineral surface forming in one case a carbonate group. Our results suggest that CO2 has a strong interaction with the mineral surface when methane is present. These results could be confirmed after the analysis of the data from the upcoming remote and in-situ observations on Mars, as those to be performed by instruments on the ESA's ExoMars Trace Gas Orbiter and ExoMars rover.

AB - Methane has been detected on all planets of our Solar System, and most of the larger moons, as well as in dwarf-planets like Pluto and Eric. The presence of this molecule in rocky planets is very interesting because its presence in the Earth's atmosphere is mainly related to biotic processes. Space instrumentation in orbiters around Mars has detected olivine on the Martian soil and dust. On the other hand the measurements of methane from the Curiosity rover report detection of background levels of atmospheric methane with abundance that is lower than model estimates of ultraviolet degradation of accreted interplanetary dust particles or carbonaceous chondrite material. Additionally, elevated levels of methane about this background have been observed implying that Mars is episodically producing methane from an additional unknown source, making the reasons of these temporal fluctuations of methane a hot topic in planetary research. The goal of this study is to investigate at atomic level the interactions during the adsorption processes of methane and other Mars atmospheric species (CO2, H2O) on forsterite surfaces, through electronic structure calculations based on the Density Functional Theory (DFT). We propose two models to simulate the interaction of adsorbates with the surface of dust mineral, such as binary mixtures (5CH4+5H2O/5CH4+5CO2) and as a semi-clathrate adsorption. We have obtained interesting results of the adsorption process in the mixture 5CH4+5CO2. Associative and dissociative adsorptions were observed for water and CO2 molecules. The methane molecules were only trapped and held by water or CO2 molecules. In the dipolar surface, the adsorption of CO2 molecules produced new species: one CO from a CO2 dissociation, and, two CO2 molecules chemisorbed to mineral surface forming in one case a carbonate group. Our results suggest that CO2 has a strong interaction with the mineral surface when methane is present. These results could be confirmed after the analysis of the data from the upcoming remote and in-situ observations on Mars, as those to be performed by instruments on the ESA's ExoMars Trace Gas Orbiter and ExoMars rover.

KW - Carbonate

KW - Chemisorption

KW - Dissociation process

KW - Methane and carbon dioxide

KW - Surfaces forsterite

KW - Vibration spectroscopy

UR - http://www.scopus.com/inward/record.url?scp=85042616207&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85042616207&partnerID=8YFLogxK

U2 - 10.1016/j.pss.2018.02.008

DO - 10.1016/j.pss.2018.02.008

M3 - Article

AN - SCOPUS:85042616207

VL - 153

SP - 163

EP - 171

JO - Planetary and Space Science

JF - Planetary and Space Science

SN - 0032-0633

ER -